scholarly journals Motion Planning for Vibration Reduction of a Railway Bridge Maintenance Robot with a Redundant Manipulator

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2793
Author(s):  
Qing Chang ◽  
Huaiwen Wang ◽  
Dongai Wang ◽  
Haijun Zhang ◽  
Keying Li ◽  
...  

Motivated by the potential applications of maintenance and inspection tasks for railway bridges, we have developed a biped climbing robot. The biped climbing robot can climb on the steel guardrail of the railway bridge with two electromagnetic feet and implement the maintenance and inspection tasks by a redundant manipulator with 7 degrees of freedom. To reduce the vibration of the manipulator caused by the low rigidity of the guardrail and the discontinuous trajectories of joints, a motion planning algorithm for vibration reduction is proposed in this paper. A geometric path accounting for obstacle avoidance and the manipulator’s center of gravity is determined by the gradient projection method with a singularity-robust inverse. Then, a piecewise quintic polynomial S shape curve with a smooth jerk (derivative of joint angular acceleration) profile is used to interpolate the sequence of joint angular position knots that are transformed from the via-points in the obstacle-avoidance path. The parameters of the quintic polynomial S-curve are determined by a nonlinear programming problem in which the objective function is to minimize the maximus of the torque exerted by the manipulator on the guardrail throughout the jerk-continuous trajectory. Finally, a series of simulation experiments are conducted to validate the effectiveness of the proposed algorithm. The simulation results show that the tracking errors of the trajectory with the proposed optimization algorithm are significantly smaller than the tracking errors of the trajectory without optimization. The absolute values of mean deviation of the tracking errors of the three coordinate axes decreased by at least 48.3% compared to the trajectory without vibration-reduction in the triangle working path and linear working path trajectory following simulations. The analysis results prove that the proposed algorithm can effectively reduce the vibration of the end effector of the manipulator.

2019 ◽  
Vol 9 (15) ◽  
pp. 3009 ◽  
Author(s):  
Qing Chang ◽  
Xiao Luo ◽  
Zhixia Qiao ◽  
Qian Li

A novel robot capable of performing maintenance and inspection tasks for railway bridges is proposed in this paper. Termed CMBOT (climbing manipulator robot), the robot is a combination of a five-degrees-of-freedom (5-Dof) biped climbing robot with two electromagnetic feet and a redundant manipulator with 7-Dof. This capability offers important advantages for performing maintenance and inspection tasks for railway bridges. Several fundamental issues of the CMBOT, such as robotic system development and motion planning algorithms, are addressed in this paper. A series of simulations and prototype experiments were conducted to validate the proposed robotic systems and motion planning algorithm. The results of the experiments show the reliability of the robotic systems and the efficiency of the motion planning algorithm.


2021 ◽  
Vol 11 (5) ◽  
pp. 2328
Author(s):  
Jui-Hung Liu ◽  
Kathleen Padrigalan

The evolution of the wind turbine to generate carbon-free renewable energy is rapidly growing. Thus, performing maintenance and inspection tasks in high altitude environments or difficult to access places, and even bad weather conditions, poses a problem for the periodic inspection process of the wind turbine industry. This paper describes the design and development of a scaled-down prototype climbing robot for wind turbine maintenance to perform critical tower operations. Thus, the unique feature of this maintenance robot is the winding mechanism, which uses a tension force to grip on the tower surface without falling to the ground either in static or dynamic situations, with the locomotion to perform a straight up–down motion in a circular truncated cone and the stability to work at significant heights. The robot computer-aided design (CAD) model of the mechanical mechanism, force and structural analysis, and the testing of the prototype model, are addressed in this paper. The key hardware developments that were utilized to build a low-cost, reliable and compact climbing robot are the embedded microprocessors, brushed DC motors, stepper motors and steel rope. This paper concludes with a successful preliminary experiment of a scaled down prototype proving the functionality of the concept. The potential applications for this robot are industrial maintenance, inspection and exploration, security and surveillance, cleaning, painting, and welding at extreme height conditions.


2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Midhun S. Menon ◽  
V. C. Ravi ◽  
Ashitava Ghosal

Hyper-redundant snakelike serial robots are of great interest due to their application in search and rescue during disaster relief in highly cluttered environments and recently in the field of medical robotics. A key feature of these robots is the presence of a large number of redundant actuated joints and the associated well-known challenge of motion planning. This problem is even more acute in the presence of obstacles. Obstacle avoidance for point bodies, nonredundant serial robots with a few links and joints, and wheeled mobile robots has been extensively studied, and several mature implementations are available. However, obstacle avoidance for hyper-redundant snakelike robots and other extended articulated bodies is less studied and is still evolving. This paper presents a novel optimization algorithm, derived using calculus of variation, for the motion planning of a hyper-redundant robot where the motion of one end (head) is an arbitrary desired path. The algorithm computes the motion of all the joints in the hyper-redundant robot in a way such that all its links avoid all obstacles present in the environment. The algorithm is purely geometric in nature, and it is shown that the motion in free space and in the vicinity of obstacles appears to be more natural. The paper presents the general theoretical development and numerical simulations results. It also presents validating results from experiments with a 12-degree-of-freedom (DOF) planar hyper-redundant robot moving in a known obstacle field.


PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 799-800 ◽  
Author(s):  
Victoria Grushkovskaya ◽  
Alexander Zuyev

2016 ◽  
Vol 40 (3) ◽  
pp. 383-397 ◽  
Author(s):  
Bahman Nouri Rahmat Abadi ◽  
Sajjad Taghvaei ◽  
Ramin Vatankhah

In this paper, an optimal motion planning algorithm and dynamic modeling of a planar kinematically redundant manipulator are considered. Kinematics of the manipulator is studied, Jacobian matrix is obtained and the dynamic equations are derived using D’Alembert’s principle. Also, a novel actuation method is introduced and applied to the 3-PRPR planar redundant manipulator. In this approach, the velocity of actuators is determined in such a way to minimize the 2-norm of the velocity vector, subjected to the derived kinematic relations as constraints. Having the optimal motion planning, the motion is controlled via a feedback linearization controller. The motion of the manipulator is simulated and the effectiveness of the proposed actuation strategy and the designed controller is investigated.


Sign in / Sign up

Export Citation Format

Share Document