scholarly journals Electromagnetic Torque Ripple in Multiple Three-Phase Brushless DC Motors for Electric Vehicles

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3097
Author(s):  
Ihor Shchur ◽  
Daniel Jancarczyk

This paper investigated an electromagnetic torque ripple level of BLDC drives with multiple three-phase (TP) permanent magnet (PM) motors for electric vehicles. For this purpose, mathematical models of PM machines of different armature winding sets-single (STP), dual (DTP), triple (TTP), and quadruple (QTP) ones of asymmetrical configuration and optimal angular displacement between winding sets were developed and corresponding computer models in the Matlab/Simulink environment were created. In conducted simulation, the influence of various factors on the electromagnetic torque ripple of the multiple-TP BLDC drives was investigated—degree of modularity, magnetic coupling between armature winding sets, and drive operation in open and closed-loop control systems. Studies have shown an increase of the electromagnetic torque ripple generated by one module in the multiple TP BLDC drives with magnetically coupled winding sets, due to additional current pulsations caused by magnetic interactions between the machine modules. However, the total electromagnetic torque ripples are much lower than in similar drives with magnetically insulated winding sets. Compared with the STP BLDC drive, the multiple TP BLDC drives with the same output parameters showed a reduction of the electromagnetic torque ripple by 27.6% for the DTP, 32.3% for the TTP, and 34.0% for the QTP BLDC drive.

2008 ◽  
Vol 13 (1) ◽  
pp. 45-54
Author(s):  
José Roberto B. de A. Monteiro ◽  
Azauri Albano de Oliveira Jr. ◽  
Manoel Luis de Aguiar ◽  
Diógenes Pereira Gonzaga ◽  
Carlos Dias Maciel

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3989-3993

This research Paper proposes the Brushless DC motors control (BLDC) could accomplish higher execution looking into effectiveness in examination for old brushed DC motor controlling which is difficult to control because it requires a phase for switching circuit. This work proposes a fuzzy logic control for brushless DC motor for axis based on Hall Effect by applying sensor control system and also it produces brushless motor for rearranging the three phase conduction mode model. At long last this paper may be with create efficient control methodologies on enhance driving dynamics on the mechanical dynamic consider of propulsion method. The recommended control method stabilizes those controls services (speeds) done by controller of brushless DC motor drive (BLDC). On behalf of settling 2 wheels also physical favorable circumstances of BLDC motors are associated straight forwardly of the tires by improving the rotor speed. The parameters such as power factor, rotor speed, torque ripple, EMF is compensated & simulation results are tabulated.


2020 ◽  
Vol 20 (3) ◽  
pp. 720-730
Author(s):  
Shikai Sun ◽  
Hui Guo ◽  
Yimeng Zhang ◽  
Yupeng Jia ◽  
Hongliang Lv ◽  
...  

Author(s):  
M. Senthil Raja ◽  
B. Geethalakshmi

Brushless dc motor still suffers from commutation torque ripple, which primarily depends on transient line current in the commutation interval. In order to control the incoming and outgoing phase currents to change at the same rate during commutation, this paper presents a novel high boost ratio DC-DC circuit topology in the front end of the inverter. With a suitable closed loop control scheme, the proposed high boost ratio DC-DC converter is operated with two different duty ratios one during commutation period and the other during non commutation period. The cause of commutation ripple is analyzed, and the way to adjust the duty ratio for obtaining the desired dc link voltage is introduced in detail. Finally, simulation and experimental results show that, compared with the existing dc–dc converter topologies, the proposed method can obtain the desired voltage much faster and minimize commutation torque ripple more efficiently


Sign in / Sign up

Export Citation Format

Share Document