scholarly journals Understanding the Thermal Time Constants of GaN HEMTs through Model Order Reduction Technique

Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3138
Author(s):  
Anass Jakani ◽  
Raphael Sommet ◽  
Frédérique Simbélie ◽  
Jean-Christophe Nallatamby

This paper described a comparison between a numerical Finite Element Analysis (FEA) and an analytical approach in order to extract the thermal time constants and the thermal resistances of simple but realistic structures. Understanding the complex contribution of multidimensional thermal spreading, the effect of multiple layers, and the correlation with the heat source length is mandatory due to the severe mismatch of thermal expansion in different epitaxial layers and high operating temperatures. This is especially true on GaN HEMT (High Electron Mobility Transistor) with the continuous decrease of the gate length and the increase of the power density. Moreover, in this paper, we extracted the time constants with a Model Order Reduction (MOR) technique based on the Ritz vector approach with inputs coming from the FE matrices. It was found that the time constants obtained by an analytical solution and a model order extraction from FEA were exactly the same. This result validated the idea that our MOR technique provides the real time constants and resistances for our device structures and in this case unified the analytical world with the numerical one.

2018 ◽  
Vol 17 (5) ◽  
pp. 821-824 ◽  
Author(s):  
Grzegorz Fotyga ◽  
Martyna Czarniewska ◽  
Adam Lamecki ◽  
Michal Mrozowski

Author(s):  
David Binion ◽  
Xiaolin Chen

Recent years has witnessed a large increase in the use of vibrating Micro-Electro-Mechanical-Systems (MEMS) especially in the expanding wireless telecommunication industry. In particular, the use of microresonators to generate or filter signals has facilitated a reduction in the size of many popular cell phones. Advances in microfabrication have increased the ability to create complex MEMS devices. Finite Element Analysis (FEA) has widely been used in the design of these devices. To obtain accurate simulations of complex MEMS devices, a dense FEA mesh is required resulting in computationally demanding simulation models. Arnoldi Model Order Reduction has been investigated and implemented to improve the computational efficiency of MEMS simulations. Using ANSYS, a popular FEA program, a micro resonator model was created. With Arnoldi, a Krylov subspace was extracted from the model and the model was projected onto the subspace reducing the model size. A harmonic simulation over normal operating frequencies was performed on the reduced model and compared with a simulation of the original model. It was found that the computational time was drastically reduced through the use of Arnoldi while achieving similar accuracy as compared to the original model.


2016 ◽  
Vol 52 (3) ◽  
pp. 1-4 ◽  
Author(s):  
Toshihito Shimotani ◽  
Yuki Sato ◽  
Takahiro Sato ◽  
Hajime Igarashi

2010 ◽  
Vol 40-41 ◽  
pp. 739-743
Author(s):  
Jian Shi ◽  
Ben Lian Xu

A second-order system model order reduction method for pre-stressed harmonic analysis of electrostatically actuated microbeams is demonstrated, which produces a low dimensional approximation of the original system and enables a substantial reduction of simulation time. The moment matching property for second-order dynamic systems is studied and the block Arnoldi algorithm is adopted for the generation of the Krylov subspace, which extracts the low order model from the discretized system assembled through finite element analysis. The difference between two successive reduced models suggests the choice of the order for the reduce model. A detailed comparison research among the full model and the reduced models is performed. The research results confirm the effectiveness of the presented method.


2015 ◽  
Vol 13 ◽  
pp. 31-39 ◽  
Author(s):  
O. Floch ◽  
A. Sommer ◽  
O. Farle ◽  
R. Dyczij-Edlinger

Abstract. Model-order reduction provides an efficient way of computing frequency sweeps for finite-element models, because the dimension of the reduced-order system depends on the complexity of the frequency response rather than the size of the original model. For electrically large domains, however, the applicability of such methods is unclear because the system response may be very complicated. This paper provides a numerical study of the effects of bandwidth, electrical size, and scan angle on the size and convergence of the ROM, by considering linear antenna arrays. A mathematical model is proposed and validated against numerical experiments.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


Sign in / Sign up

Export Citation Format

Share Document