scholarly journals Hardware-Based Activation Function-Core for Neural Network Implementations

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Griselda González-Díaz_Conti ◽  
Javier Vázquez-Castillo ◽  
Omar Longoria-Gandara ◽  
Alejandro Castillo-Atoche ◽  
Roberto Carrasco-Alvarez ◽  
...  

Today, embedded systems (ES) tend towards miniaturization and the carrying out of complex tasks in applications such as the Internet of Things, medical systems, telecommunications, among others. Currently, ES structures based on artificial intelligence using hardware neural networks (HNNs) are becoming more common. In the design of HNN, the activation function (AF) requires special attention due to its impact on the HNN performance. Therefore, implementing activation functions (AFs) with good performance, low power consumption, and reduced hardware resources is critical for HNNs. In light of this, this paper presents a hardware-based activation function-core (AFC) to implement an HNN. In addition, this work shows a design framework for the AFC that applies a piecewise polynomial approximation (PPA) technique. The designed AFC has a reconfigurable architecture with a wordlength-efficient decoder, i.e., reduced hardware resources are used to satisfy the desired accuracy. Experimental results show a better performance of the proposed AFC in terms of hardware resources and power consumption when it is compared with state of the art implementations. Finally, two case studies were implemented to corroborate the AFC performance in widely used ANN applications.

Author(s):  
Linh Manh Pham

Many domains of human life are more and moreimpacted by applications of the Internet of Things (i.e., IoT).The embedded devices produce masses of data day after dayrequiring a strong network infrastructure. The inclusion ofmessaging protocols like MQTT is important to ensure as fewerrors as possible in sending millions of IoT messages. Thisprotocol is a great component of the IoT universe due to itslightweight design and low power consumption. DistributedMQTT systems are typically needed in actual applicationenvironments because centralized MQTT methods cannotaccommodate a massive volume of data. Although beingscalable decentralized MQTT systems, they are not suited totraffic workload variability. IoT service providers may incurexpense because the computing resources are overestimated.This points to the need for a new approach to adapt workloadfluctuation. Through proposing a modular MQTT framework,this article provides such an elasticity approach. In order toguarantee elasticity of MQTT server cluster while maintainingintact IoT implementation, the MQTT framework used offthe-shelf components. The elasticity feature of our frameworkis verified by various experiments.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Rym Skhiri ◽  
Virginie Fresse ◽  
Jean Paul Jamont ◽  
Benoit Suffran ◽  
Jihene Malek

Field Programmable Gate Array (FPGA) draws a significant attention from both industry and academia by accelerating computationally expensive applications and achieving low power consumption. FPGAs are interesting due to the flexibility and reconfigurabiltiy of their device. Cloud computing becomes a major trend towards infrastructure and computing resources dematerialization. It provides “unlimited” storage capacities and a large number of data and applications that make collaboration easier between multiple (not domain specific) designers. Many papers in the literature have surveyed Cloud and FPGA separately and, more precisely, their services and challenges. The acceleration of applications by FPGA and the unlimited capacities of the cloud are expected to be more and more pervasive. As more and more FPGA are being deployed in traditional cloud, it is appropriate to clarify what is the cloud FPGA and which drawbacks of using FPGA in local are resolved. We present a survey of the cloud FPGA works that have been proposed to exploit the advantages of using FPGA in the cloud. We classify these studies in three services to highlight their benefits and limitations. This survey aims at motivating further researches in cloud FPGA.


2020 ◽  
Author(s):  
SMITA GAJANAN NAIK ◽  
Mohammad Hussain Kasim Rabinal

Electrical memory switching effect has received a great interest to develop emerging memory technology such as memristors. The high density, fast response, multi-bit storage and low power consumption are their...


2020 ◽  
Vol 64 (1-4) ◽  
pp. 165-172
Author(s):  
Dongge Deng ◽  
Mingzhi Zhu ◽  
Qiang Shu ◽  
Baoxu Wang ◽  
Fei Yang

It is necessary to develop a high homogeneous, low power consumption, high frequency and small-size shim coil for high precision and low-cost atomic spin gyroscope (ASG). To provide the shim coil, a multi-objective optimization design method is proposed. All structural parameters including the wire diameter are optimized. In addition to the homogeneity, the size of optimized coil, especially the axial position and winding number, is restricted to develop the small-size shim coil with low power consumption. The 0-1 linear programming is adopted in the optimal model to conveniently describe winding distributions. The branch and bound algorithm is used to solve this model. Theoretical optimization results show that the homogeneity of the optimized shim coil is several orders of magnitudes better than the same-size solenoid. A simulation experiment is also conducted. Experimental results show that optimization results are verified, and power consumption of the optimized coil is about half of the solenoid when providing the same uniform magnetic field. This indicates that the proposed optimal method is feasible to develop shim coil for ASG.


2016 ◽  
Vol 136 (11) ◽  
pp. 1555-1566 ◽  
Author(s):  
Jun Fujiwara ◽  
Hiroshi Harada ◽  
Takuya Kawata ◽  
Kentaro Sakamoto ◽  
Sota Tsuchiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document