scholarly journals Using Bluetooth Low Energy Technology to Perform ToF-Based Positioning

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Antonella Comuniello ◽  
Alessio De Angelis ◽  
Antonio Moschitta ◽  
Paolo Carbone

Many distributed systems that perform indoor positioning are often based on ultrasound signals and time domain measurements exchanged between low-cost ultrasound transceivers. Synchronization between transmitters and receivers is usually needed. In this paper, the use of BLE technology to achieve time synchronization by wirelessly triggered ultrasound transceivers is analyzed. Building on a previous work, the proposed solution uses BLE technology as communication infrastructure and achieves a level of synchronization compatible with Time of Flight (ToF)-based distance estimations and positioning. The proposed solution was validated experimentally. First, a measurement campaign of the time-synchronization delay for the adopted embedded platforms was carried out. Then, ToF-based distance estimations and positioning were performed. The results show that an accurate and low-cost ToF-based positioning system is achievable, using ultrasound transmissions and triggered by BLE RF transmissions.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 136858-136871
Author(s):  
Lu Bai ◽  
Fabio Ciravegna ◽  
Raymond Bond ◽  
Maurice Mulvenna

2020 ◽  
pp. 572-576
Author(s):  
Khamla NonAlinsavath ◽  
◽  
Lukito Edi Nugroho ◽  
Widyawan Widyawan ◽  
Kazuhiko Hamamoto

Indoor positioning and tracking systems have become enormous issue in location awareness computing due to its improvement of location detection and positioning identification. The locations are normally detected using position technologies such as Global Positioning System, radio frequency identification, Bluetooth Beacon, Wi-Fi fingerprinting, pedometer and so on. This research presents an indoor positioning system based on Bluetooth low energy 4.0 Beacons; we have implemented Bluetooth signal strength for tracking the specific location and detect the movement of user through Android application platform. Bluetooth low energy was addressed to be an experiment technique to set up into the real environment of interior the building. The signal strength of beacons is evaluated and measured the quality of accuracy as well as the improvement of provide raw data from Beacons to the system to get better performance of the direction map and precise distance from current location to desire’s positioning. A smartphone application detects the location-based Bluetooth signal strength accurately and can be achieved the destination by provided direction map and distance perfectly.


2019 ◽  
Vol 1 (2) ◽  
pp. 1-5
Author(s):  
Nurul Fatehah Zulkpli ◽  
Nor Azlina Ab. Aziz ◽  
Noor Ziela Abd Rahman ◽  
Rosli Besar

Indoor Positioning System (IPS) is used to locate a person, an object or a location inside a building. IPS is important in providing location-based services, which has recently gain much popularity. The services ease visitors’ navigation at unfamiliar premises. Location-based services depend on the capability of IPS to accurately determine the location of the user, which is a challenging issue in indoor environments. Several wireless technologies are available. In this paper, two of the most widely used IPS technologies are reviewed which are, WiFi and Bluetooth low energy (BLE). Their advantages and disadvantages are reviewed and reported here. Comparison of the systems based on their performance, accuracy and limitations are presented as well.


Sign in / Sign up

Export Citation Format

Share Document