scholarly journals Analysis of the Quantization Noise in Discrete Wavelet Transform Filters for Image Processing

Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 135 ◽  
Author(s):  
Nikolay Chervyakov ◽  
Pavel Lyakhov ◽  
Dmitry Kaplun ◽  
Denis Butusov ◽  
Nikolay Nagornov

In this paper, we analyze the noise quantization effects in coefficients of discrete wavelet transform (DWT) filter banks for image processing. We propose the implementation of the DWT method, making it possible to determine the effective bit-width of the filter banks coefficients at which the quantization noise does not significantly affect the image processing results according to the peak signal-to-noise ratio (PSNR). The dependence between the PSNR of the DWT image quality on the wavelet and the bit-width of the wavelet filter coefficients is analyzed. The formulas for determining the minimal bit-width of the filter coefficients at which the processed image achieves high quality (PSNR ≥ 40 dB) are given. The obtained theoretical results were confirmed through the simulation of DWT for a test image using the calculated bit-width values. All considered algorithms operate with fixed-point numbers, which simplifies their hardware implementation on modern devices: field-programmable gate array (FPGA), application-specific integrated circuit (ASIC), etc.

2020 ◽  
Vol 10 (4) ◽  
pp. 1223 ◽  
Author(s):  
Nikolay Chervyakov ◽  
Pavel Lyakhov ◽  
Nikolay Nagornov

Denoising and compression of 2D and 3D images are important problems in modern medical imaging systems. Discrete wavelet transform (DWT) is used to solve them in practice. We analyze the quantization noise effect in coefficients of DWT filters for 3D medical imaging in this paper. The method for wavelet filters coefficients quantizing is proposed, which allows minimizing resources in hardware implementation by simplifying rounding operations. We develop the method for estimating the maximum error of 3D grayscale and color images DWT with various bits per color (BPC). The dependence of the peak signal-to-noise ratio (PSNR) of the images processing result on wavelet used, the effective bit-width of filters coefficients and BPC is revealed. We derive formulas for determining the minimum bit-width of wavelet filters coefficients that provide a high (PSNR ≥ 40 dB for images with 8 BPC, for example) and maximum (PSNR = ∞ dB) quality of 3D medical imaging by DWT depending on wavelet used. The experiments of 3D tomographic images processing confirmed the accuracy of theoretical analysis. All data are presented in the fixed-point format in the proposed method of 3D medical images DWT. It is making possible efficient, from the point of view of hardware and time resources, the implementation for image denoising and compression on modern devices such as field-programmable gate arrays and application-specific integrated circuits.


2011 ◽  
Author(s):  
Egydio C. S. Caria ◽  
Trajano A. de A. Costa ◽  
João Marcos A. Rebello ◽  
Donald O. Thompson ◽  
Dale E. Chimenti

Author(s):  
Mayank Srivastava ◽  
Jamshed M Siddiqui ◽  
Mohammad Athar Ali

The rapid development of image editing software has resulted in widespread unauthorized duplication of original images. This has given rise to the need to develop robust image hashing technique which can easily identify duplicate copies of the original images apart from differentiating it from different images. In this paper, we have proposed an image hashing technique based on discrete wavelet transform and Hough transform, which is robust to large number of image processing attacks including shifting and shearing. The input image is initially pre-processed to remove any kind of minor effects. Discrete wavelet transform is then applied to the pre-processed image to produce different wavelet coefficients from which different edges are detected by using a canny edge detector. Hough transform is finally applied to the edge-detected image to generate an image hash which is used for image identification. Different experiments were conducted to show that the proposed hashing technique has better robustness and discrimination performance as compared to the state-of-the-art techniques. Normalized average mean value difference is also calculated to show the performance of the proposed technique towards various image processing attacks. The proposed copy detection scheme can perform copy detection over large databases and can be considered to be a prototype for developing online real-time copy detection system.   


The research constitutes a distinctive technique of steganography of image. The procedure used for the study is Fractional Random Wavelet Transform (FRWT). The contrast between wavelet transform and the aforementioned FRWT is that it comprises of all the benefits and features of the wavelet transform but with additional highlights like randomness and partial fractional value put up into it. As a consequence of the fractional value and the randomness, the algorithm will give power and a rise in the surveillance layers for steganography. The stegano image will be acquired after administrating the algorithm which contains not only the coated image but also the concealed image. Despite the overlapping of two images, any diminution in the grade of the image is not perceived. Through this steganographic process, we endeavor for expansion in surveillance and magnitude as well. After running the algorithm, various variables like Mean Square Error (MSE) and Peak Signal to Noise ratio (PSNR) are deliberated. Through the intended algorithm, a rise in the power and imperceptibility is perceived and it can also support diverse modification such as scaling, translation and rotation with algorithms which previously prevailed. The irrefutable outcome demonstrated that the algorithm which is being suggested is indeed efficacious.


Author(s):  
Latha Parameswaran ◽  
K Anbumani

This chapter discusses a content-based authentication technique based on inter-coefficient relationship of Discrete Wavelet Transform (DWT). Watermark is generated from the first level DWT. An image digest (which is a binary string) is generated from the second level DWT. The watermark is embedded in the mid-frequency coefficients of first level DWT as directed by the image digest. Image authentication is done by computing the Completeness of Signature. The proposed scheme is capable of withstanding incidental image processing operations such as compression and identifies any malicious tampering done on the host image.


Sign in / Sign up

Export Citation Format

Share Document