scholarly journals An Optimized Algorithm and Test Bed for Improvement of Efficiency of ESS and Energy Use

Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 388 ◽  
Author(s):  
Seung-Mo Je ◽  
Jun-Ho Huh

The Republic of Korea (ROK) has four distinct seasons. Such an environment provides many benefits, but also brings some major problems when using new and renewable energies. The rainy season or typhoons in summer become the main causes of inconsistent production rates of these energies, and this would become a fatal weakness in supplying stable power to the industries running continuously, such as the aquaculture industry. This study proposed an improvement plan for the efficiency of Energy Storage System (ESS) and energy use. Use of sodium-ion batteries is suggested to overcome the disadvantages of lithium-ion batteries, which are dominant in the current market; a greedy algorithm and the Floyd–Warshall algorithm were also proposed as a method of scheduling energy use considering the elements that could affect communication output and energy use. Some significant correlations between communication output and energy efficiency have been identified through the OPNET-based simulations. The simulation results showed that the greedy algorithm was more efficient. This algorithm was then implemented with C-language to apply it to the Test Bed developed in the previous study. The results of the Test Bed experiment supported the proposals.

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Jules-Adrien Capitaine ◽  
Qing Wang

This paper presents a novel design for a test platform to determine the state of health (SOH) of lithium-ion batteries (LIBs). The SOH is a key parameter of a battery energy storage system and its estimation remains a challenging issue. The batteries that have been tested are 18,650 Li-ion cells as they are the most commonly used batteries on the market. The test platform design is detailed from the building of the charging and discharging circuitry to the software. Data acquired from the testing circuitry are stored and displayed in LabVIEW to obtain the charging and discharging curves. The resulting graphs are compared to the outcome predicted by the battery datasheets, to verify that the platform delivers coherent values. The SOH of the battery is then calculated using a Coulomb counting method in LabVIEW. The batteries will be discharged through various types of resistive circuits, and the differences in the resulting curves will be discussed. A single battery cell will also be tested over 30 cycles and the decrease in the SOH will be clearly identified.


Author(s):  
Alexander Headley ◽  
Benjamin Schenkman ◽  
Keith Olson ◽  
Laurence Sombardier

Abstract The Natural Energy Laboratory of Hawaii Authority’s (NELHA) campus on The Island of Hawai’i supplies resources for a number of renewable energy and aquaculture research projects. There is a growing interest at NELHA to convert the research campus to a 100% renewable, islanded microgrid to improve the resiliency of the campus for critical ocean water pumping loads and to limit the increase in the long-term cost of operations. Currently, the campus has solar array to cover some electricity needs but scaling up this system to fully meet the needs of the entire research campus will require significant changes and careful planning to minimize costs. This study will investigate least-cost solar and energy storage system sizes capable of meeting the needs of the campus. The campus is split into two major load centers that are electrically isolated and have different amounts of available land for solar installations. The value of adding an electrical transmission line if NELHA converts to a self-contained microgrid is explored by estimating the cost of resources for each load center individually and combined. Energy storage using lithium-ion and hydrogen-based technologies is investigated. For the hydrogen-based storage system, a variable efficiency and fixed efficiency representation of the electrolysis and fuel cell systems are used. Results using these two models show the importance of considering the changing performance of hydrogen systems for sizing algorithms.


2021 ◽  
Author(s):  
Mohammad Hassan Amir Jamlouie

Over the last century, the energy storage industry has continued to evolve and adapt to changing energy requirements. To run an efficient energy storage system two points must be considered. Firstly, precise load forecasting to determine energy consumption pattern. Secondly, is the correct estimation of state of charge (SOC). In this project there is a model introduced to predict the load consumption based on ANN implemented by MATLAB. The Designed intelligent system introduced for load prediction according to the hypothetical training data related to two years daily based load consumption of a residential area. For another obstacle which is accurate estimation of SOC, two separate models are provided based on ANN and ANFIS for Lithium-ion batteries as an energy storage system. There are several researches in this regard but in this project the author makes an effort to introduce the most efficient based on the MSE of each performance and as a result the method by ANN is found more accurate.


2012 ◽  
Vol 4 (2) ◽  
pp. 1-10 ◽  
Author(s):  
R.J Fuller

Despite their proven track record in the cold climate countries of northern Europe, there are no reports in the research literature of experiences using advanced fabric energy storage (FES) systems in countries where cooling rather than heating is the main priority. This paper reports some of the experiences with the first known advanced FES system in Australia made over the first full calendar year of operation. It is located in a three-storey building on a university campus in Victoria and has been in operation since mid-2002. Temperature, energy use and operational mode data were recorded during 2003. Airflow measurements through the FES system have been made in five areas of the building. On-going operating problems still exist with the system and this has prevented a conclusive evaluation of its suitability for the southern Australian climate.


Sign in / Sign up

Export Citation Format

Share Document