scholarly journals Wireless Sensor Networks for Smart Homes: A Fuzzy-Based Solution for an Energy-Effective Duty Cycle

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 131 ◽  
Author(s):  
Giovanni Pau ◽  
Valerio Salerno

This paper introduces a fuzzy-based method that, according to the ratio of Throughput to Workload and the battery level, manages the sleeping time of devices in Wireless Sensor Networks (WSNs) for smart homes. The purpose of this work is a system that can be executed on off-the-shelf hardware and offers enhanced performance confronted with other approaches. The challenge here is to achieve a practical method that reaches the target while bypassing complex and computationally expensive solutions, which would diminish the possible applicability of the method in real scenarios. The retrieved results prove that the proposed approach outperforms other solutions, significantly prolonging the life of battery-powered wireless devices with also satisfactory values of the ratio Throughput to Workload. Besides, a proof-of-concept implementation on off-the-shelf devices confirms that the proposed method does not expect powerful hardware and can be surely implemented on a low-cost device.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1179
Author(s):  
Carolina Del-Valle-Soto ◽  
Carlos Mex-Perera ◽  
Juan Arturo Nolazco-Flores ◽  
Alma Rodríguez ◽  
Julio C. Rosas-Caro ◽  
...  

Wireless Sensor Networks constitute an important part of the Internet of Things, and in a similar way to other wireless technologies, seek competitiveness concerning savings in energy consumption and information availability. These devices (sensors) are typically battery operated and distributed throughout a scenario of particular interest. However, they are prone to interference attacks which we know as jamming. The detection of anomalous behavior in the network is a subject of study where the routing protocol and the nodes increase power consumption, which is detrimental to the network’s performance. In this work, a simple jamming detection algorithm is proposed based on an exhaustive study of performance metrics related to the routing protocol and a significant impact on node energy. With this approach, the proposed algorithm detects areas of affected nodes with minimal energy expenditure. Detection is evaluated for four known cluster-based protocols: PEGASIS, TEEN, LEACH, and HPAR. The experiments analyze the protocols’ performance through the metrics chosen for a jamming detection algorithm. Finally, we conducted real experimentation with the best performing wireless protocols currently used, such as Zigbee and LoRa.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
S. Raja Rajeswari ◽  
V. Seenivasagam

Wireless sensor networks (WSNs) consist of lightweight devices with low cost, low power, and short-ranged wireless communication. The sensors can communicate with each other to form a network. In WSNs, broadcast transmission is widely used along with the maximum usage of wireless networks and their applications. Hence, it has become crucial to authenticate broadcast messages. Key management is also an active research topic in WSNs. Several key management schemes have been introduced, and their benefits are not recognized in a specific WSN application. Security services are vital for ensuring the integrity, authenticity, and confidentiality of the critical information. Therefore, the authentication mechanisms are required to support these security services and to be resilient to distinct attacks. Various authentication protocols such as key management protocols, lightweight authentication protocols, and broadcast authentication protocols are compared and analyzed for all secure transmission applications. The major goal of this survey is to compare and find out the appropriate protocol for further research. Moreover, the comparisons between various authentication techniques are also illustrated.


Author(s):  
Niaz Ahmed ◽  
Justin Hoyt ◽  
Andriy Radchenko ◽  
David Pommerenke ◽  
Y. Rosa Zheng

Author(s):  
Christian Wittke ◽  
Kai Lehniger ◽  
Stefan Weidling ◽  
Mario Schoelzel

With the growing number of wireless devices in the internet of things (IoT), maintenance and management of these devices has become a key issue. In particular, the ability to wirelessly update devices is a must in order to fix security issues and software bugs, or to extend firmware functionality. Code update mechanisms in wireless sensor networks (WSNs), a subset of IoT networks, must handle limited resources and strict constraints. Also, over-the-air (OTA) code updates in the context of an IoT ecosystem may open new security vulnerabilities. An IoT security framework should therefore be extended with additional mechanisms to secure the OTA code update functionality. The chapter presents an overview of various OTA code update techniques for WSNs and their security flaws along with some existing attacks and possible countermeasures. It is discussed which attacks can be used more easily with the code update functionality. Countermeasures are compared as to whether they secure the weakened security objectives, giving a guideline to choose the right combination of countermeasures.


Author(s):  
Lina M. Pestana Leão de Brito ◽  
Laura M. Rodríguez Peralta

As with many technologies, defense applications have been a driver for research in sensor networks, which started around 1980 due to two important programs of the Defense Advanced Research Projects Agency (DARPA): the distributed sensor networks (DSN) and the sensor information technology (SensIT) (Chong & Kumar, 2003). However, the development of sensor networks requires advances in several areas: sensing, communication, and computing. The explosive growth of the personal communications market has driven the cost of radio devices down and has increased the quality. At the same time, technological advances in wireless communications and electronic devices (such as low-cost, low-power, small, simple yet efficient wireless communication equipment) have enabled the manufacturing of sensor nodes and, consequently, the development of wireless sensor networks (WSNs).


Sign in / Sign up

Export Citation Format

Share Document