scholarly journals One Technique to Enhance the Resolution of Discrete Fourier Transform

Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 330 ◽  
Author(s):  
Ivan Kanatov ◽  
Dmitry Kaplun ◽  
Denis Butusov ◽  
Viacheslav Gulvanskii ◽  
Aleksander Sinitca

Discrete Fourier transform (DFT) is a common analysis tool in digital signal processing. This transform is well studied and its shortcomings are known as well. Various window functions (e.g., Hanning, Blackman, Kaiser) are often used to reduce sidelobes and to spread the spectrum. In this paper, we introduce a transformation that allows removing the sidelobes of the Fourier transform and increasing the resolution of the DFT without changing the time sample. The proposed method is based on signal phase analysis. We give the comparison of the proposed approach with known methods based on window functions. The advantages and disadvantages of the proposed technique are explicitly shown. We also give a set of examples illustrating the application of our technique in some practical applications, including engine vibration analysis and a short-range radar system.

2008 ◽  
Vol 3 (4) ◽  
pp. 74-86
Author(s):  
Boris A. Knyazev ◽  
Valeriy S. Cherkasskij

The article is intended to the students, who make their first steps in the application of the Fourier transform to physics problems. We examine several elementary examples from the signal theory and classic optics to show relation between continuous and discrete Fourier transform. Recipes for correct interpretation of the results of FDFT (Fast Discrete Fourier Transform) obtained with the commonly used application programs (Matlab, Mathcad, Mathematica) are given.


Author(s):  
Valerii Zadiraka ◽  
Inna Shvidchenko

Introduction. When solving problems of transcomputational complexity, the problem of evaluating the rounding error is relevant, since it can be dominant in evaluating the accuracy of solving the problem. The ways to reduce it are important, as are the reserves for optimizing the algorithms for solving the problem in terms of accuracy. In this case, you need to take into account the rounding-off rules and calculation modes. The article shows how the estimates of the rounding error can be used in modern computer technologies for solving problems of computational, applied mathematics, as well as information security. The purpose of the article is to draw the attention of the specialists in computational and applied mathematics to the need to take into account the rounding error when analyzing the quality of the approximate solution of problems. This is important for mathematical modeling problems, problems using Bigdata, digital signal and image processing, cybersecurity, and many others. The article demonstrates specific estimates of the rounding error for solving a number of problems: estimating the mathematical expectation, calculating the discrete Fourier transform, using multi-digit arithmetic and using the estimates of the rounding error in algorithms for solving computer steganography problems. The results. The estimates of the rounding error of the algorithms for solving the above-mentioned classes of problems are given for different rounding-off rules and for different calculation modes. For the problem of constructing computer steganography, the use of the estimates of the rounding error in computer technologies for solving problems of hidden information transfer is shown. Conclusions. Taking into account the rounding error is an important factor in assessing the accuracy of the approximate solution of problems of the complexity above average. Keywords: rounding error, computer technology, discrete Fourier transform, multi-digit arithmetic, computer steganography.


2021 ◽  
pp. 204-268
Author(s):  
Victor Lazzarini

This chapter now turns to the discussion of filters, which extend the notion of spectrum beyond signals into the processes themselves. A gentle introduction to the concept of delaying signals, aided by yet another variant of the Fourier transform, the discrete-time Fourier transform, allows the operation of filters to be dissected. Another analysis tool, in the form of the z-transform, is brought to the fore as a complex-valued version of the discrete-time Fourier transform. A study of the characteristics of filters, introducing the notion of zeros and poles, as well as finite impulse response (FIR) and infinite impulse response (IIR) forms, composes the main body of the text. This is complemented by a discussion of filter design and applications, including ideas related to time-varying filters. The chapter conclusion expands once more the definition of spectrum.


2016 ◽  
Vol 8 (1) ◽  
pp. 14 ◽  
Author(s):  
S. M. Abrarov ◽  
B. M. Quine

<p>This paper presents a new approach in application of the Fourier transform to the complex error function resulting in an efficient rational approximation. Specifically, the computational test shows that with only $17$ summation terms the obtained rational approximation of the complex error function provides accuracy ${10^{ - 15}}$ over the most domain of practical importance $0 \le x \le 40,000$ and ${10^{ - 4}} \le y \le {10^2}$ required for the HITRAN-based spectroscopic applications. Since the rational approximation does not contain trigonometric or exponential functions dependent upon the input parameters $x$ and $y$, it is rapid in computation. Such an example demonstrates that the considered methodology of the Fourier transform may be advantageous in practical applications.</p>


2010 ◽  
Vol 28 (7) ◽  
pp. 1409-1418 ◽  
Author(s):  
T. Nygrén ◽  
Th. Ulich

Abstract. The standard method of calculating the spectrum of a digital signal is based on the Fourier transform, which gives the amplitude and phase spectra at a set of equidistant frequencies from signal samples taken at equal intervals. In this paper a different method based on stochastic inversion is introduced. It does not imply a fixed sampling rate, and therefore it is useful in analysing geophysical signals which may be unequally sampled or may have missing data points. This could not be done by means of Fourier transform without preliminary interpolation. Another feature of the inversion method is that it allows unequal frequency steps in the spectrum, although this property is not needed in practice. The method has a close relation to methods based on least-squares fitting of sinusoidal functions to the signal. However, the number of frequency bins is not limited by the number of signal samples. In Fourier transform this can be achieved by means of additional zero-valued samples, but no such extra samples are used in this method. Finally, if the standard deviation of the samples is known, the method is also able to give error limits to the spectrum. This helps in recognising signal peaks in noisy spectra.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Pranesh Kumar ◽  
Arthur Western

The analysis of pulsars is a complicated procedure due to the influence of background radio waves. Special radio telescopes designed to detect pulsar signals have to employ many techniques to reconstruct interstellar signals and determine if they originated from a pulsating radio source. The Discrete Fourier Transform on its own has allowed astronomers to perform basic spectral analysis of potential pulsar signals. However, Radio Frequency Interference (RFI) makes the process of detecting and analyzing pulsars extremely difficult. This has forced astronomers to be creative in identifying and determining the specific characteristics of these unique rotating neutron stars. Astrophysicists have utilized algorithms such as the Fast Fourier Transform (FFT) to predict the spin period and harmonic frequencies of pulsars. However, FFT-based searches cannot be utilized alone because low-frequency pulsar signals go undetected in the presence of background radio noise. Astrophysicists must stack up pulses using the Fast Folding Algorithm (FFA) and utilize the coherent dedispersion technique to improve FFT sensitivity. The following research paper will discuss how the Discrete Fourier Transform is a useful technique for detecting radio signals and determining the pulsar frequency. It will also discuss how dedispersion and the pulsar frequency are critical for predicting multiple characteristics of pulsars and correcting the influence of the Interstellar Medium (ISM).


2019 ◽  
Vol 30 ◽  
pp. 04010 ◽  
Author(s):  
Olga Ponomareva ◽  
Alexey Ponomarev ◽  
Natalya Smirnova

A generalization of the discrete Fourier transform in the form of a parametric discrete Fourier transform is proposed. The analytical and stochastic properties of the introduced discrete transformation are investigated. An example of the application of the parametric discrete Fourier transform in telecommunications is given - a generalization of the well-known Herzel algorithm


Sign in / Sign up

Export Citation Format

Share Document