scholarly journals Correction: Park, J.-H. et al. 915-MHz Continuous-Wave Doppler Radar Sensor for Detection of Vital Signs. Electronics 2019, 8, 561

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 855 ◽  
Author(s):  
Park ◽  
Jeong ◽  
Lee ◽  
Oh ◽  
Yang

The authors wish to make the following corrections to the published paper [...]

Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 561 ◽  
Author(s):  
Jae-Hyun Park ◽  
Yeo-Jin Jeong ◽  
Ga-Eun Lee ◽  
Jun-Taek Oh ◽  
Jong-Ryul Yang

A miniaturized continuous-wave Doppler radar sensor operating at 915 MHz to remotely detect both respiration and heart rate (beats per minute) is presented. The proposed radar sensor comprises a front-end module including an implemented complementary metal-oxide semiconductor low-noise amplifier (LNA) and fractal-slot patch antennas, whose area was reduced by 15.2%. The two-stage inverter-based LNA was designed with an interstage capacitor and a feedback resistor to acquire ultrawide bandwidth. Two operating frequencies, 915 MHz and 2.45 GHz, were analyzed with regard to path loss for efficient operation because frequency affects detection sensitivity, reflected signal power from the human body, and measurement distance in a far-field condition. Path-loss calculation based on the simplified layer model indicates that the reflected power of the 915 MHz radar could be higher than that of the 2.45 GHz radar. The implemented radar front-end module excluding the LNA occupies 35 × 55 mm2. Vital signs were obtained via a fast Fourier transform and digital filtering using raw signals. In an experiment with six subjects, the respiration and heart rate obtained at 0.8 m using the proposed radar sensor exhibited mean accuracies of 99.4% and 97.6% with respect to commercialized reference sensors, respectively.


Resuscitation ◽  
2015 ◽  
Vol 96 ◽  
pp. 53-54
Author(s):  
Jens Muehlsteff ◽  
Ralph Wijshoff ◽  
Marek Bartula ◽  
Marc Fuller ◽  
Dawn B. Jorgenson ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2351 ◽  
Author(s):  
Nebojša Malešević ◽  
Vladimir Petrović ◽  
Minja Belić ◽  
Christian Antfolk ◽  
Veljko Mihajlović ◽  
...  

The measurement of human vital signs is a highly important task in a variety of environments and applications. Most notably, the electrocardiogram (ECG) is a versatile signal that could indicate various physical and psychological conditions, from signs of life to complex mental states. The measurement of the ECG relies on electrodes attached to the skin to acquire the electrical activity of the heart, which imposes certain limitations. Recently, due to the advancement of wireless technology, it has become possible to pick up heart activity in a contactless manner. Among the possible ways to wirelessly obtain information related to heart activity, methods based on mm-wave radars proved to be the most accurate in detecting the small mechanical oscillations of the human chest resulting from heartbeats. In this paper, we presented a method based on a continuous-wave Doppler radar coupled with an artificial neural network (ANN) to detect heartbeats as individual events. To keep the method computationally simple, the ANN took the raw radar signal as input, while the output was minimally processed, ensuring low latency operation (<1 s). The performance of the proposed method was evaluated with respect to an ECG reference (“ground truth”) in an experiment involving 21 healthy volunteers, who were sitting on a cushioned seat and were refrained from making excessive body movements. The results indicated that the presented approach is viable for the fast detection of individual heartbeats without heavy signal preprocessing.


2017 ◽  
pp. 95-119
Author(s):  
Fok Hing Chi Tivive ◽  
Abdesselam Bouzerdoum ◽  
Bijan G. Mobasseri

2017 ◽  
pp. 71-93 ◽  
Author(s):  
Yimin D. Zhang ◽  
Dominic K. C. Ho

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1230
Author(s):  
Lei Du ◽  
Qiao Sun ◽  
Jie Bai ◽  
Xiaolei Wang ◽  
Tianqi Xu

The 24 GHz continuous-wave (CW) Doppler radar sensor (DRS) is widely used for measuring the instantaneous speed of moving objects by using a non-contact approach, and has begun to be used in train-borne movable speed measurements in recent years in China because of its advanced performance. The architecture and working principle of train-borne DRSs with different structures including single-channel DRSs used for freight train speed measurements in railway freight dedicated lines and dual-channel DRSs used for speed measurements of high-speed and urban rail trains in railway passenger dedicated lines, are first introduced. Then, the disadvantages of two traditional speed calibration methods for train-borne DRS are described, and a new speed calibration method based on the Doppler shift signal simulation by imposing a signal modulation on the incident CW microwave signal is proposed. A 24 GHz CW radar target simulation system for a train-borne DRS was specifically realized to verify the proposed speed calibration method for a train-borne DRS, and traceability and performance evaluation on simulated speed were taken into account. The simulated speed range of the simulation system was up to (5~500) km/h when the simulated incident angle range was within the range of (45 ± 8)°, and the maximum permissible error (MPE) of the simulated speed was ±0.05 km/h. Finally, the calibration and uncertainty evaluation results of two typical train-borne dual-channel DRS samples validated the effectiveness and feasibility of the proposed speed calibration approach for a train-borne DRS with full range in the laboratory as well as in the field.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3085 ◽  
Author(s):  
Sandra Costanzo

Non-contact wireless sensing approaches have emerged in recent years, in order to enable novel enhanced developments in the framework of healthcare and biomedical scenarios. One of these technologically advanced solutions is given by software-defined radar platforms, a low-cost radar implementation, where all operations are implemented and easily changed via software. In the present paper, a software-defined radar implementation with Doppler elaboration features is presented, to be applied for the non-contact monitoring of human respiration signals. A quadrature receiver I/Q (In-phase/Quadrature) architecture is adopted in order to overcome the critical issues related to the occurrences of null detection points, while the phase-locked loop components included in the software defined radio transceiver are successfully exploited to guarantee the phase correlation between I/Q signal components. The proposed approach leads to a compact, low-cost, and flexible radar solution, whose application abilities may be simply changed via software, with no need for hardware modifications. Experimental results on a human target are discussed so as to demonstrate the feasibility of the proposed approach for vital signs detection.


Sign in / Sign up

Export Citation Format

Share Document