scholarly journals A Single-Stage LED Streetlight Driver with Soft-Switching and Interleaved PFC Features

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 911 ◽  
Author(s):  
Cheng ◽  
Chang ◽  
Cheng ◽  
Chang ◽  
Chung ◽  
...  

This paper presents a single-stage driver with soft-switching and interleaved power-factor correction (PFC) features suitable for light-emitting diode (LED) energy-saving streetlight applications. The proposed LED streetlight driver integrates an interleaved buck-boost PFC converter with coupled inductors and a half-bridge LLC resonant converter into a single-stage power-conversion circuit with reduced voltage stress on the DC-linked capacitor and power switches, and it is suitable for operating at high utility-line voltages. Furthermore, coupled inductors in the interleaved buck-boost PFC converter are operated in discontinuous-conduction mode (DCM) for accomplishing PFC, and the half-bridge LLC resonant converter features zero-voltage switching (ZVS) to reduce switching losses of power switches, and zero-current switching (ZCS) to decrease conduction losses of power diodes. Operational modes and design considerations for the proposed LED streetlight driver are introduced. Finally, a 144 W (36V/4A)-rated LED prototype driver is successfully developed and implemented for supplying a streetlight module and operating with a utility-line input voltage of 220 V. High power factor, low output-voltage ripple factor, low output-current ripple factor, and high efficiency are achieved in the proposed LED streetlight driver.

2017 ◽  
Vol 7 (2) ◽  
pp. 167 ◽  
Author(s):  
Chun-An Cheng ◽  
Chien-Hsuan Chang ◽  
Hung-Liang Cheng ◽  
Ching-Hsien Tseng ◽  
Tsung-Yuan Chung

2018 ◽  
Vol 8 (8) ◽  
pp. 1408 ◽  
Author(s):  
Yong-Nong Chang ◽  
Shun-Yu Chan ◽  
Hung-Liang Cheng

This paper proposes a single-stage, high power-factor light-emitting diode (LED) driver with a self-excited control scheme for the power switches. The self-excited mechanism is accomplished by fetching the driving voltages from a center-tapped transformer. The frequency of the driving voltages is exactly the same as the resonant frequency of the resonant converter, thus synchronizing the resonant frequency with the switching frequency and achieving zero-voltage switching (ZVS) and zero-current switching (ZCS) of power switches. The circuit topology is mainly composed of a half-bridge LC resonant converter, along with a boost-type power-factor corrector (PFC) to fulfill the single-stage structure, meaning that the presented LED driver possesses high power-factor features and low switching loss. Finally, a 40 W prototype circuit is implemented and tested, and the experimental results exhibit a satisfactory performance.


2012 ◽  
Vol 433-440 ◽  
pp. 5549-5555
Author(s):  
Yun Tao Yue ◽  
Yan Lin

A novel scheme of low power communication power supply with high power factor and soft-switching is presented, a power factor corrector and dc/dc converter of passive lossless soft-switching is based on a ML4803 IC control. DC/DC converter introduces a novel two-transistor forward soft-switching technique, which realizes zero-voltage turn-on and turn-off, with no additional switches. a communication power supply module is developed in this paper. It has the characteristics of rapid dynamic response, high power factor, high efficiency and small bulk ect.


Author(s):  
Dae-Seong Shin ◽  
Young-Jin Jung ◽  
Sung-Soo Hong ◽  
Sang-Kyu Han ◽  
Byung-Jun Jang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document