scholarly journals A Reconfigurable Polarization—Frequency Supershape Patch Antenna with Enhanced Bandwidth

Electronics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1166
Author(s):  
Anastasios Koutinos ◽  
Georgia Xanthopoulou ◽  
George Kyriacou ◽  
Michael Chryssomallis

In this article a reconfigurable antenna for WLAN/WiMAX applications is presented. A super-shape radiator of an ellipsis shape is used to achieve wider intrinsic bandwidth compared to the classical rectangular patch antenna, while the dimensions remain comparable. The proposed antenna is fed at two points exciting both horizontal and vertical polarization but in different operating frequencies. To achieve wider bandwidth, as a whole but also for each polarization, the symmetrical feeding points for each excitation are also employed with a proper feeding network. PIN diodes are also used in the feeding network to provide the option of narrower bandwidth. The antenna substrate is Rogers RO4003C with dielectric constant εr = 3.55 and dissipation losses tanδ = 0.0027 with height h = 1.524 mm. The antenna operates in the range of 2.3 GHz to 2.55 GHz but, using the proposed procedure, it can be designed for different frequency ranges.

2018 ◽  
Vol 69 (4) ◽  
pp. 293-299 ◽  
Author(s):  
Boddapati T. P. Madhav ◽  
Shaik Rajiya ◽  
Badugu P. Nadh ◽  
Munuswami S. Kumar

Abstract In this article a compact frequency reconfigurable antenna is presented for wireless communication applications of industrial, scientific and medical band (ISM). The proposed antenna model is designed with the dimensions of 58mm×48 mm on FR4 epoxy of dielectric constant 4.4 with the thickness of 0.8 mm. The proposed antenna consists of defected T-shape ground plane, which acts as a reflector. In the design of frequency reconfigurable antenna, BAR 64-02V PIN diodes are used as switching elements and antenna is fed by microstrip transmission line. The proposed antenna can switch at different frequencies (2.5 GHz, 2.3 GHz and 2.2 GHz) depending on the biasing voltage applied to the PIN diodes. The current antenna showing VSWR < 2 in the operating band and providing peak realized gain of 3.2 dBi. A good matching obtained between expected and the measured results.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 127 ◽  
Author(s):  
A Vamseekrishna ◽  
B T P Madhav

A compact coplanar waveguide fed reconfigurable antenna with three notch bands are presented in this paper. Proposed antenna reconfigurability is acquired by placing bar6404 PIN diodes in the S-shaped ground plane in right to left mode and left to right mode. By switching the diode, reconfigurability achieved for three different operations. The substrate material for the proposed antenna is FR4 with dielectric constant 4.4 and loss tangent 0.02. The overall dimension of the reconfigurable antenna is around 30×26mm2. It is being observed in this work for the cause of each individual slot on notch band characteristics. The measured gain for the designed reconfigurable antenna is quite stable at operating frequencies except notch bands. The proposed antenna is suitable for practical wideband applications with notching.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012073
Author(s):  
Sathuluri MallikharjunaRao ◽  
Thirumala SettyVennelaSrujana ◽  
Gurivinadagunta Bhuvana Bindu ◽  
Garlapatikotinagapavani

Abstract The relevance of reconfiguration in a dynamic environment is to improve an antenna’s performance by allowing it to transition between multiple frequencies. In this paper, we designed a reconfigurable patch antenna and fed it by strip line feeding by placing 2 slots to obtain different resonant frequencies. The feature of reconfigurability is attained by using Pin Diodes. In our design, we take a 2 pin diode. The proposed Antenna can operate on different frequencies i.e. 2.88GHz, 5.5GHz, 10.8GHz and 11.1GHz with the efficiency of 90% and more at different conditions of the diodes. This analysis is done by using HFSS Software.


In recent years of electronics industrialization, antennas are more popular components; wearable antennas play an important role due to their properties such as wireless communication and miniaturization. The design of wearable antennas have distinction in the area of antenna design and development, in this paper a thorough study had been carried out wearable antennas blended with textile, which has significant dielectric constant. This work describes the design a textile antenna, namely, a rectangular microstrip patch antenna and then rectangular with U-slot antenna with slits. After designing two kinds of antennas, a comparison will be made between their results. Conductive textile, a copper-plated polyester fabric, will be used for fabricating antenna radiators and grounds. An insulating denim fabric with dielectric constant 1.7 with a thickness of 0.7 is used for preparing the substrates. The proposed antenna is designed and all the results will calculated using Ansoft HFSS Software. After evaluating the results of a rectangular microstrip antenna and U-slot Antenna on textile substrate, the rectangular patch resonate at 2.5 GHz with the return loss of -16.86dB and the U-slot Antenna resonated at 2.2 GHz with return loss of -41.68dB and 3.9 GHz return loss of -16.16dB.


2020 ◽  
Vol 16 ◽  
pp. 01-12
Author(s):  
Rabnawaz Sarmad Uqaili ◽  
Junaid Ahmed Uqaili ◽  
Sidrish Zahra ◽  
Faraz Bashir Soomro ◽  
Ali Akbar

This paper presents the design of a dual-band microstrip patch antenna for Wi-Fi that operates at 2.5 GHz and 5.8 GHz. The antenna contains a rectangular patch with two rectangular slots. The first slot is incorporated in the patch while the second slot is incorporated in the ground plane. The antenna is based on a microstrip fed rectangular patch printed on the FR-4 epoxy substrate with a dielectric constant of 4.4 and a thickness of 1.6 mm with patch size 24 mm × 21 mm. The simulated result shows that the realized antenna successfully works on dual-band and subsequently achieves a bandwidth of 100 MHz and 200 MHz as well as the return loss about -29.9 dB and -15.16 dB for 2.5 GHz and 5.8 GHz respectively. A stable omnidirectional radiation pattern is observed in the operating frequency bands. The antenna meets the required specifications for 802.11 WLAN standards.


In this letter the antenna is designed for achieving the multiband frequency configuration with the dimension of 26*26*1.6 mm3 with the use of substrate of dielectric constant of 4.4. It is capable of operating at the frequency of 3.9 GHz,5.8GHz and 6.7GHz, with a gain of 2.9dB,4.6dB,-1.5dB respectively. By using the method like DGS, Slots and SSRR structure, the design is able to generate and operate at the above mentioned frequencies. Furthermore by placing a metallic switch on the rectangular shaped slot the proposed antenna can also be used as reconfigurable antenna to produce different frequency


Multiband reconfigurable patch antenna plays a vital role in wireless communication applications. By changing the current path on the patch a multiband reconfigurable antenna can be achieved. A simple multiband frequency reconfigurable microstrip patch antenna is presented in this paper. The proposed antenna structure is simulated in CST microwave studio. This antenna operates between 1.3 to 5.6 GHz with more than fifteen different frequencies. The antenna is analyzed for four different configurations. The designed antenna is resonating at five different frequencies (1.45 GHz, 2.36 GHz, 3.09 GHz, 3.6 GHz and 5.45 GHz) when both PIN diodes are ON. When PIN diode D1 is ON and D2 is OFF the antenna is resonating at 1.4 GHz, 2.22 GHz, 2.5 GHz, 3.08 GHz and 3.59 GHz. When D1 is OFF and D2 is ON the antenna is resonating at 2.34 GHz, 3.2 GHz, 3.62 GHz and 5.38 GHz frequencies. The slotted antenna or when both PIN diodes are in OFF condition antenna is resonating at 2.22 GHz, 2.49 GHz, 3.21 GHz, 3.6 GHz and 5.42 GHz. For each configuration the antenna parameters like gain, VSWR, directivity and radiation patterns are analyzed.


Sign in / Sign up

Export Citation Format

Share Document