scholarly journals Numerical Investigation of Periodic Fluctuations in Energy Efficiency in Centrifugal Pumps at Different Working Points

Energies ◽  
2017 ◽  
Vol 10 (3) ◽  
pp. 342 ◽  
Author(s):  
Hehui Zhang ◽  
Shengxiang Deng ◽  
Yingjie Qu
2020 ◽  
Vol 23 (2) ◽  
pp. 48-51
Author(s):  
V. KONDRATENKO ◽  
◽  
V. KALYNYCHENKO ◽  

Mine drainage systems, which are used at the main drainage of mining enterprises, have a drive capacity of up to 1600kW. To reduce non-productive energy losses, as well as for the continuous operation of the mining company, mine pumps must be energy efficient and reliable. Analysis of downtime of drainage systems shows that the weak point is the unloading device. This fact can lead not only to the failure of the pumping unit, but also to possible prolonged downtime of the mine. The main disadvantage of the existing disk unloading devices of mine pumps is their low reliability and low service life, due to the rapid wear of the components of the unloading unit. The most vulnerable elements of the unloading device are the unloading rings. The need for frequent replacement and adjustment of the elements of the discharge unit is associated with disassembly and assembly of the pump directly in the pump chamber. Such actions require significant costs of unproductive manual labor of service personnel, and rapid wear of parts of the unloading device necessitates their constant replenishment. Malfunctions in the unloading device can cause significant pump failures. To increase the reliability and energy efficiency of mine drainage systems, the method of control of the unloading device was used. During the experimental studies it was found that cavitation phenomena during the operation of pumping units are absent and, accordingly, can not be the cause of wear of the elements of the unloading unit. When the pumps are operating in steady state, the displacement of the rotors was monitored for 3-4 hours on each pump unit. After data processing, it was obtained that the wear of the surface of the unloading rings occurs at a rate of 0.05-0.15mm in one hour. To determine the wear of the rings of unloading during start-up - stop of the pump, at first the indicators of measuring devices at the established mode of operation of the pump unit were fixed. Then the pump was turned off and on again. After starting the pump unit, we made sure that the operating mode of the unloading device did not change and compared the readings of the shaft position indicator before stopping and after starting the pump. From the measurements made it followed that stopping and starting the pump does not lead to noticeable wear of the unloading device. Therefore, it can be assumed that mainly the wear of the discharge rings occurs during the steady operation of the pump unit.


2018 ◽  
Vol 46 (4) ◽  
pp. 497-510 ◽  
Author(s):  
Erdin Ibraim ◽  
Jean-Francois Camenen ◽  
Andrea Diambra ◽  
Karolis Kairelis ◽  
Laura Visockaite ◽  
...  

Author(s):  
Adel Pourtaghi ◽  
Heidar Pouladi

A centrifugal pump is a pump which uses a rotating impeller for increasing the pressure of a fluid. Fluid flows to pump from the impellers hole and get accelerated by it and flows toward the volute fast from where enters to the outlet of the pump. Having enough knowledge in the field of geometrical parameters has a great effect on improving the designing and making this kind of pumps. The present study intends to take a small step in this field by evaluation of the effect of mentioned parameters and simulation of fluid current in inside the pumps. For reaching to this goal different number of blades in modelled in impellers and the performance of pump in simulated in Ansys CFX software and finally the results of CFD studies are presented as charts and curves.


Author(s):  
G Akanova ◽  
A Sadkowski ◽  
S Podbolotov ◽  
A Kolga ◽  
I Stolpovskikh

Purpose. To study hydraulic losses in pumping units during pumping and transportation of liquids, to develop the design and technology solutions to improve the energy efficiency of centrifugal pumps in the mining and oil-producing industries. Methodology. In the theoretical and experimental analysis of hydraulic losses during the transportation of liquids, the hydraulics and experimental analysis methods were used. Findings. As a result of the research carried out, a new design scheme of a multistage centrifugal pump has been developed, providing a coaxial arrangement of impellers, which allows reducing hydraulic losses in pump elements and increasing the energy efficiency of pumping units. Originality. Based on the analysis of existing designs of multistage blowers of axial and centrifugal types, the distribution of hydraulic losses in the elements of a centrifugal blower with coaxial impellers is considered. Experimental dependences on the establishment of pressure flow and power characteristics are presented. Based on the accounting of hydraulic losses, the energy efficiency of the design of the pumping unit with the coaxial arrangement of the impellers was assessed. Practical value. The new design of a centrifugal pump with coaxial impellers reduces hydraulic losses by more than 23% compared to traditional designs of centrifugal pumps. The results of the work can be used by design, research, and industrial organizations engaged in the design and operation of pumping equipment.


Author(s):  
M. D. Serediuk

For solving a range of assignments concerning design and operation of main oil pipelines it is necessary to possess appropriate mathematical models of centrifugal pump characteristics as the pumps appear to be the main equipment of pumping stations. Known analytical dependences describe only operating envelope of the pumps and thus can`t be applied for low flowrate regimes being inherent to the Ukrainian oil transmission system. In addition, these mathematical models do not take into account the effect of the viscosity of the transported oil on the pressure and energy characteristics of oil pumps. The work features the improved the method of mathematical modeling of the hydrodynamic characteristics of centrifugal pumps of main oil pipelines for the full range of working feeds, taking into account the effect of the viscosity of the pumped oil. It is also given a consideration to mathematical models of oil pumps characteristics, coefficients of which are found by the coordinates of two or three points of corresponding charts, and polynomial models, the coefficients of which are determined by the least squares method by a set of passport or experimental data. Adequate mathematical models for pressure characteristics and efficiency coefficient of oil pumps are proposed that are suitable for creation of computational algorithms for determining the throughput and energy efficiency of operation of main oil pipelines. It has been proved that for oil pumps that are operated under different combining schemes with significant reduction of theirs operation flowrate the advantage should be given to the mathematical models of the characteristics obtained by the method of least squares. In this case, polynomial models of the third degree provide the necessary accuracy of the calculations. The method of introducing a control unit for the influence of the transported oil viscosity on the characteristics of the pumps is proposed under determining the capability and energy efficiency of operation of main oil pipelines


Sign in / Sign up

Export Citation Format

Share Document