scholarly journals Short-Term Load Forecasting of Natural Gas with Deep Neural Network Regression †

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2008 ◽  
Author(s):  
Gregory Merkel ◽  
Richard Povinelli ◽  
Ronald Brown

Deep neural networks are proposed for short-term natural gas load forecasting. Deep learning has proven to be a powerful tool for many classification problems seeing significant use in machine learning fields such as image recognition and speech processing. We provide an overview of natural gas forecasting. Next, the deep learning method, contrastive divergence is explained. We compare our proposed deep neural network method to a linear regression model and a traditional artificial neural network on 62 operating areas, each of which has at least 10 years of data. The proposed deep network outperforms traditional artificial neural networks by 9.83% weighted mean absolute percent error (WMAPE).

Deep learning is a spectrum of machine learning which uses advanced neural networks to solve the various machine learning problems. Its working is very similar to the working of a human brain where the models take decision based on various input parameters. There are multiple open source libraries which implement neural networks, like Tensorflow, Theano, PyTorch, Keras etc. In this paper we have proposed a generic architecture that can be used for any type of classification problems with binary output or classification output using Deep Learning model: Artificial Neural Network (ANN). In the architectural model after Data preprocessing we first build the ANN classifier using Keras library with Tensorflow backends, second step we have apply Cross-validation method for better accuracy. Then we perform Dropout Regularization method for preventing from overfitting and at last we have applied grid search technique for parameter tuning that basically will test several combinations of Hyperparameter values and will eventually return the best selection choice with K-Fold cross validation. And the experimental results shows in higher accuracy with ours proposed architecture and in our proposed architecture results we remove the randomness from the model. In the proposed architecture we can again rebuild developing our model using Keras Callback function by using this feature in our model it does not create any major difference in terms of accuracy. But as we know the accuracy will vary with parameter tuning. The main advantage of using Keras Callback function method is it’s saves a lot of time for building model and it is easy for debugging the model.


Author(s):  
Mahshooq Abdul Majeed ◽  
Soumya Mudgal ◽  
Lalit Tak ◽  
Janavi Popat ◽  
Harsh Kakadiya ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
pp. 7-10
Author(s):  
Hendry Fonda

ABSTRACT Riau batik is known since the 18th century and is used by royal kings. Riau Batik is made by using a stamp that is mixed with coloring and then printed on fabric. The fabric used is usually silk. As its development, comparing Javanese  batik with riau batik Riau is very slowly accepted by the public. Convolutional Neural Networks (CNN) is a combination of artificial neural networks and deeplearning methods. CNN consists of one or more convolutional layers, often with a subsampling layer followed by one or more fully connected layers as a standard neural network. In the process, CNN will conduct training and testing of Riau batik so that a collection of batik models that have been classified based on the characteristics that exist in Riau batik can be determined so that images are Riau batik and non-Riau batik. Classification using CNN produces Riau batik and not Riau batik with an accuracy of 65%. Accuracy of 65% is due to basically many of the same motifs between batik and other batik with the difference lies in the color of the absorption in the batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning   ABSTRAK   Batik Riau dikenal sejak abad ke 18 dan digunakan oleh bangsawan raja. Batik Riau dibuat dengan menggunakan cap yang dicampur dengan pewarna kemudian dicetak di kain. Kain yang digunakan biasanya sutra. Seiring perkembangannya, dibandingkan batik Jawa maka batik Riau sangat lambat diterima oleh masyarakat. Convolutional Neural Networks (CNN) merupakan kombinasi dari jaringan syaraf tiruan dan metode deeplearning. CNN terdiri dari satu atau lebih lapisan konvolutional, seringnya dengan suatu lapisan subsampling yang diikuti oleh satu atau lebih lapisan yang terhubung penuh sebagai standar jaringan syaraf. Dalam prosesnya CNN akan melakukan training dan testing terhadap batik Riau sehingga didapat kumpulan model batik yang telah terklasi    fikasi berdasarkan ciri khas yang ada pada batik Riau sehingga dapat ditentukan gambar (image) yang merupakan batik Riau dan yang bukan merupakan batik Riau. Klasifikasi menggunakan CNN menghasilkan batik riau dan bukan batik riau dengan akurasi 65%. Akurasi 65% disebabkan pada dasarnya banyak motif yang sama antara batik riau dengan batik lainnya dengan perbedaan terletak pada warna cerap pada batik riau. Kata kunci: Batik; Batik Riau; CNN; Image; Deep Learning


2020 ◽  
Vol 15 (1) ◽  
pp. 1-14
Author(s):  
Zuzana Rowland ◽  
Alla Kasych ◽  
Petr Suler

The ability to predict a company's financial health is a challenge for many researchers and scientists. It is also a distracting topic, as many other new approaches to financial health predictions have emerged in recent years. In this paper, we focused on identifying the financial health of mining companies in the Czech Republic. We chose the neural network method because, based on various instances of related research, neural networks represent a more reliable financial forecast than mathematical-statistical methods such as discriminant analysis and logistic regression. The concept of a neural network emerged with the first artificial neural networks, inspired by biological systems. The existence of prediction and classification problems directly predetermines artificial neural networks with respect to a given issue. We used the Amadeus database for processing, including financial indicators, SPSS, and Visual Gene Developer software. In total, we analyzed sixty-four mining companies. Complete data on financial stability were available for fifty-three companies, which we explored, and based on these results, identified financial situations for the other thirteen. Based on the available information, we processed a neural network and regression analysis. We managed to classify thirteen companies as solvent, insolvent, and in the grey zone, with the help of prediction.


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


Sign in / Sign up

Export Citation Format

Share Document