scholarly journals Integrated Optimal Dispatch of a Rural Micro-Energy-Grid with Multi-Energy Stream Based on Model Predictive Control

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3439 ◽  
Author(s):  
Xin Zhang ◽  
Jianhua Yang ◽  
Weizhou Wang ◽  
Man Zhang ◽  
Tianjun Jing

Due to the randomness of the intermittent distributed energy output and load demand of a micro-energy-grid, micro-sources cannot fully follow the day-ahead micro-energy-grid optimal dispatching plan. Therefore, a micro-energy-grid is difficult to operate steadily and is challenging to include in the response dispatch of a distribution network. In view of the above problems, this paper proposes an integrated optimal dispatch method for a micro-energy-grid based on model predictive control. In the day-ahead optimal dispatch, an optimal dispatch model of a micro-energy-grid is built taking the daily minimum operating cost as the objective function, and the optimal output curve of each micro-source of the next day per hour is obtained. In the real-time dispatch, rolling optimization of the day-ahead optimal dispatching plan is implemented based on model predictive control theory. The real-time state of the system is sampled, and feedback correction of the system is implemented. The influence of uncertain factors in the system is eliminated to ensure steady operation of the system. Finally, the validity and feasibility of the integrated optimal dispatching method are verified by a case simulation analysis.

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1077 ◽  
Author(s):  
Guoxing Bai ◽  
Yu Meng ◽  
Li Liu ◽  
Weidong Luo ◽  
Qing Gu ◽  
...  

Recently, model predictive control (MPC) is increasingly applied to path tracking of mobile devices, such as mobile robots. The characteristics of these MPC-based controllers are not identical due to the different approaches taken during design. According to the differences in the prediction models, we believe that the existing MPC-based path tracking controllers can be divided into four categories. We named them linear model predictive control (LMPC), linear error model predictive control (LEMPC), nonlinear model predictive control (NMPC), and nonlinear error model predictive control (NEMPC). Subsequently, we built these four controllers for the same mobile robot and compared them. By comparison, we got some conclusions. The real-time performance of LMPC and LEMPC is good, but they are less robust to reference paths and positioning errors. NMPC performs well when the reference velocity is high and the radius of the reference path is small. It is also robust to positioning errors. However, the real-time performance of NMPC is slightly worse. NEMPC has many disadvantages. Like LMPC and LEMPC, it performs poorly when the reference velocity is high and the radius of the reference path is small. Its real-time performance is also not good enough.


2019 ◽  
Vol 9 (13) ◽  
pp. 2649 ◽  
Author(s):  
Guoxing Bai ◽  
Yu Meng ◽  
Li Liu ◽  
Weidong Luo ◽  
Qing Gu ◽  
...  

At present, many path tracking controllers are unable to actively adjust the longitudinal velocity according to path information, such as the radius of the curve, to further improve tracking accuracy. For this problem, we propose a new path tracking framework based on model predictive control (MPC). This is a multilayer control system that includes three path tracking controllers with fixed velocities and a velocity decision controller. This new control method is named multilayer MPC. This new control method is compared to other control methods through simulation. In this paper, the maximum values of the displacement error and the heading error of multilayer MPC are 92.92% and 77.02%, respectively, smaller than those of nonlinear MPC. The real-time performance of multilayer MPC is very good, and parallel computation can further improve the real-time performance of this control method. In simulation results, the calculation time of multilayer MPC in each control period does not exceed 0.0130 s, which is much smaller than the control period. In addition, when the error of positioning systems is at the centimeter level, the performance of multilayer MPC is still good.


Author(s):  
Yunlai Wang ◽  
Xi Wang

Abstract Nonlinear model predictive control (NMPC) is a strategy suitable for dealing with highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. Because of the complexity of the algorithm and the real-time performance of the predictive model, it has thus far been infeasible to implement model predictive control in the realtime control system of aircraft engine. In most nonlinear model predictive control, nonlinear interior point methods (IPM) are used to calculate the optimal solution, which iterate to the optimal solution based on the Jacobian and Hessian matrix. Most nonlinear IPM solver, such as MATLAB fmincon and IPOPT, cannot calculate the Jacobian and Hessian matrix precisely and quickly, instead of using numerical differentiation to calculate the Jacobian matrix and BFGS method to approach to the Hessian matrix. From what has been discussed above, we will 1) improve the real-time performance of predictive model by replacing the time-consuming component level model (CLM) with a neural network model, which is trained based on the data of component level model, 2) precisely calculate the Jacobian and Hessian matrix using automatic differentiation, and propose a group of algorithms to make NMPC strategy quicker, which include making use of the structure of predictive model, and the integrity of weighted sums of Hessian matrix in IPM. Finally, considering input and output constraints, the fast NMPC strategy is compared with normal NMPC. Simulation results with mean time of 19.3% – 27.9% of normal NMPC on different platforms, verify that the fast NMPC proposed can improve the real-time performance during the process of acceleration, deceleration for aircraft engine.


Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 105
Author(s):  
Zhenzhong Chu ◽  
Da Wang ◽  
Fei Meng

An adaptive control algorithm based on the RBF neural network (RBFNN) and nonlinear model predictive control (NMPC) is discussed for underwater vehicle trajectory tracking control. Firstly, in the off-line phase, the improved adaptive Levenberg–Marquardt-error surface compensation (IALM-ESC) algorithm is used to establish the RBFNN prediction model. In the real-time control phase, using the characteristic that the system output will change with the external environment interference, the network parameters are adjusted by using the error between the system output and the network prediction output to adapt to the complex and uncertain working environment. This provides an accurate and real-time prediction model for model predictive control (MPC). For optimization, an improved adaptive gray wolf optimization (AGWO) algorithm is proposed to obtain the trajectory tracking control law. Finally, the tracking control performance of the proposed algorithm is verified by simulation. The simulation results show that the proposed RBF-NMPC can not only achieve the same level of real-time performance as the linear model predictive control (LMPC) but also has a superior anti-interference ability. Compared with LMPC, the tracking performance of RBF-NMPC is improved by at least 43% and 25% in the case of no interference and interference, respectively.


Sign in / Sign up

Export Citation Format

Share Document