scholarly journals Review and Comparison of Path Tracking Based on Model Predictive Control

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1077 ◽  
Author(s):  
Guoxing Bai ◽  
Yu Meng ◽  
Li Liu ◽  
Weidong Luo ◽  
Qing Gu ◽  
...  

Recently, model predictive control (MPC) is increasingly applied to path tracking of mobile devices, such as mobile robots. The characteristics of these MPC-based controllers are not identical due to the different approaches taken during design. According to the differences in the prediction models, we believe that the existing MPC-based path tracking controllers can be divided into four categories. We named them linear model predictive control (LMPC), linear error model predictive control (LEMPC), nonlinear model predictive control (NMPC), and nonlinear error model predictive control (NEMPC). Subsequently, we built these four controllers for the same mobile robot and compared them. By comparison, we got some conclusions. The real-time performance of LMPC and LEMPC is good, but they are less robust to reference paths and positioning errors. NMPC performs well when the reference velocity is high and the radius of the reference path is small. It is also robust to positioning errors. However, the real-time performance of NMPC is slightly worse. NEMPC has many disadvantages. Like LMPC and LEMPC, it performs poorly when the reference velocity is high and the radius of the reference path is small. Its real-time performance is also not good enough.

2019 ◽  
Vol 9 (13) ◽  
pp. 2649 ◽  
Author(s):  
Guoxing Bai ◽  
Yu Meng ◽  
Li Liu ◽  
Weidong Luo ◽  
Qing Gu ◽  
...  

At present, many path tracking controllers are unable to actively adjust the longitudinal velocity according to path information, such as the radius of the curve, to further improve tracking accuracy. For this problem, we propose a new path tracking framework based on model predictive control (MPC). This is a multilayer control system that includes three path tracking controllers with fixed velocities and a velocity decision controller. This new control method is named multilayer MPC. This new control method is compared to other control methods through simulation. In this paper, the maximum values of the displacement error and the heading error of multilayer MPC are 92.92% and 77.02%, respectively, smaller than those of nonlinear MPC. The real-time performance of multilayer MPC is very good, and parallel computation can further improve the real-time performance of this control method. In simulation results, the calculation time of multilayer MPC in each control period does not exceed 0.0130 s, which is much smaller than the control period. In addition, when the error of positioning systems is at the centimeter level, the performance of multilayer MPC is still good.


Author(s):  
Yunlai Wang ◽  
Xi Wang

Abstract Nonlinear model predictive control (NMPC) is a strategy suitable for dealing with highly complex, nonlinear, uncertain, and constrained dynamics involved in aircraft engine control problems. Because of the complexity of the algorithm and the real-time performance of the predictive model, it has thus far been infeasible to implement model predictive control in the realtime control system of aircraft engine. In most nonlinear model predictive control, nonlinear interior point methods (IPM) are used to calculate the optimal solution, which iterate to the optimal solution based on the Jacobian and Hessian matrix. Most nonlinear IPM solver, such as MATLAB fmincon and IPOPT, cannot calculate the Jacobian and Hessian matrix precisely and quickly, instead of using numerical differentiation to calculate the Jacobian matrix and BFGS method to approach to the Hessian matrix. From what has been discussed above, we will 1) improve the real-time performance of predictive model by replacing the time-consuming component level model (CLM) with a neural network model, which is trained based on the data of component level model, 2) precisely calculate the Jacobian and Hessian matrix using automatic differentiation, and propose a group of algorithms to make NMPC strategy quicker, which include making use of the structure of predictive model, and the integrity of weighted sums of Hessian matrix in IPM. Finally, considering input and output constraints, the fast NMPC strategy is compared with normal NMPC. Simulation results with mean time of 19.3% – 27.9% of normal NMPC on different platforms, verify that the fast NMPC proposed can improve the real-time performance during the process of acceleration, deceleration for aircraft engine.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3439 ◽  
Author(s):  
Xin Zhang ◽  
Jianhua Yang ◽  
Weizhou Wang ◽  
Man Zhang ◽  
Tianjun Jing

Due to the randomness of the intermittent distributed energy output and load demand of a micro-energy-grid, micro-sources cannot fully follow the day-ahead micro-energy-grid optimal dispatching plan. Therefore, a micro-energy-grid is difficult to operate steadily and is challenging to include in the response dispatch of a distribution network. In view of the above problems, this paper proposes an integrated optimal dispatch method for a micro-energy-grid based on model predictive control. In the day-ahead optimal dispatch, an optimal dispatch model of a micro-energy-grid is built taking the daily minimum operating cost as the objective function, and the optimal output curve of each micro-source of the next day per hour is obtained. In the real-time dispatch, rolling optimization of the day-ahead optimal dispatching plan is implemented based on model predictive control theory. The real-time state of the system is sampled, and feedback correction of the system is implemented. The influence of uncertain factors in the system is eliminated to ensure steady operation of the system. Finally, the validity and feasibility of the integrated optimal dispatching method are verified by a case simulation analysis.


Author(s):  
Huiran Wang ◽  
Qidong Wang ◽  
Wuwei Chen ◽  
Linfeng Zhao ◽  
Dongkui Tan

Model predictive control is one of the main methods used in path tracking for autonomous vehicles. To improve the path tracking performance of the vehicle, a path tracking method based on model predictive control with variable predictive horizon is proposed in this paper. Based on the designed model predictive controller for path tracking, the response analysis of path tracking control system under the different predictive horizons is carried out to clarify the influence of predictive horizon on path tracking accuracy, driving comfort and real-time of the control algorithm. Then, taking the lateral offset, the steering frequency and the real-time of the control algorithm as comprehensive performance indexes, the particle swarm optimization algorithm is designed to realize the adaptive optimization for the predictive horizon. The effectiveness of the proposed method is evaluated via numerical simulation based on Simulink/CarSim and hardware-in-the-loop experiment on an autonomous driving simulator. The obtained results show that the optimized predictive horizon can adapt to the different driving environment, and the proposed path tracking method has good comprehensive performance in terms of path tracking accuracy of the vehicle, driving comfort and real-time.


Author(s):  
Kai Zou ◽  
Yingfeng Cai ◽  
Long Chen ◽  
Xiaoqiang Sun

In order to increase the real-time performance of lateral trajectory tracking of unmanned vehicles, this paper designs an event-triggered nonlinear model predictive controller, which can save computation resource to a large extent while the tracking accuracy is still guaranteed. Firstly, a simplified vehicle is established using a two-degree-of-freedom dynamics model. Then, according to the theory of model predictive control, a nonlinear model predictive controller (NMPC) is designed. Since traditional NMPCs often have poor real-time control performance, this paper introduces an event-triggered mechanism, which allows the remaining elements of the control variables in the control horizon to be applied to the system once a specific condition is satisfied. Finally, the proposed controller is established by Matlab/Simulink, and the different trigger conditions are compared and verified in a double lane change maneuvers Then a system for evaluation is designed to quantify the performance of the controller in different trigger conditions. For further verification of the proposed controller, a Hard-in-the-loop simulation system based on Xpack package is established to conduct an HIL experiment. The results show that compared with traditional nonlinear model predictive control, our method offers greatly improved real-time performance while the tracking accuracy is guaranteed.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-12
Author(s):  
Hao Zhang ◽  
Yuxiao Zhou ◽  
Yifei Tian ◽  
Jun-Hai Yong ◽  
Feng Xu

Reconstructing hand-object interactions is a challenging task due to strong occlusions and complex motions. This article proposes a real-time system that uses a single depth stream to simultaneously reconstruct hand poses, object shape, and rigid/non-rigid motions. To achieve this, we first train a joint learning network to segment the hand and object in a depth image, and to predict the 3D keypoints of the hand. With most layers shared by the two tasks, computation cost is saved for the real-time performance. A hybrid dataset is constructed here to train the network with real data (to learn real-world distributions) and synthetic data (to cover variations of objects, motions, and viewpoints). Next, the depth of the two targets and the keypoints are used in a uniform optimization to reconstruct the interacting motions. Benefitting from a novel tangential contact constraint, the system not only solves the remaining ambiguities but also keeps the real-time performance. Experiments show that our system handles different hand and object shapes, various interactive motions, and moving cameras.


Author(s):  
Gokhan Ozkan ◽  
Phuong H. Hoang ◽  
Payam Ramezani Badr ◽  
Chris S. Edrington ◽  
Behnaz Papari

Sign in / Sign up

Export Citation Format

Share Document