scholarly journals Solving the Energy Efficient Coverage Problem in Wireless Sensor Networks: A Distributed Genetic Algorithm Approach with Hierarchical Fitness Evaluation

Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3526 ◽  
Author(s):  
Zi-Jia Wang ◽  
Zhi-Hui Zhan ◽  
Jun Zhang

This paper proposed a distributed genetic algorithm (DGA) to solve the energy efficient coverage (EEC) problem in the wireless sensor networks (WSN). Due to the fact that the EEC problem is Non-deterministic Polynomial-Complete (NPC) and time-consuming, it is wise to use a nature-inspired meta-heuristic DGA approach to tackle this problem. The novelties and advantages in designing our approach and in modeling the EEC problems are as the following two aspects. Firstly, in the algorithm design, we realized DGA in the multi-processor distributed environment, where a set of processors run distributed to evaluate the fitness values in parallel to reduce the computational cost. Secondly, when we evaluate a chromosome, different from the traditional model of EEC problem in WSN that only calculates the number of disjoint sets, we proposed a hierarchical fitness evaluation and constructed a two-level fitness function to count the number of disjoint sets and the coverage performance of all the disjoint sets. Therefore, not only do we have the innovations in algorithm, but also have the contributions on the model of EEC problem in WSN. The experimental results show that our proposed DGA performs better than other state-of-the-art approaches in maximizing the number of disjoin sets.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
B. Baranidharan ◽  
B. Santhi

Clustering the Wireless Sensor Networks (WSNs) is the major issue which determines the lifetime of the network. The parameters chosen for clustering should be appropriate to form the clusters according to the need of the applications. Some of the well-known clustering techniques in WSN are designed only to reduce overall energy consumption in the network and increase the network lifetime. These algorithms achieve increased lifetime, but at the cost of overloading individual sensor nodes. Load balancing among the nodes in the network is also equally important in achieving increased lifetime. First Node Die (FND), Half Node Die (HND), and Last Node Die (LND) are the different metrics for analysing lifetime of the network. In this paper, a new clustering algorithm, Genetic Algorithm based Energy efficient Clustering Hierarchy (GAECH) algorithm, is proposed to increase FND, HND, and LND with a novel fitness function. The fitness function in GAECH forms well-balanced clusters considering the core parameters of a cluster, which again increases both the stability period and lifetime of the network. The experimental results also clearly indicate better performance of GAECH over other algorithms in all the necessary aspects.


Author(s):  
Amandeep Kaur Sohal ◽  
Ajay Kumar Sharma ◽  
Neetu Sood

Background: An information gathering is a typical and important task in agriculture monitoring and military surveillance. In these applications, minimization of energy consumption and maximization of network lifetime have prime importance for green computing. As wireless sensor networks comprise of a large number of sensors with limited battery power and deployed at remote geographical locations for monitoring physical events, therefore it is imperative to have minimum consumption of energy during network coverage. The WSNs help in accurate monitoring of remote environment by collecting data intelligently from the individual sensors. Objective: The paper is motivated from green computing aspect of wireless sensor network and an Energy-efficient Weight-based Coverage Enhancing protocol using Genetic Algorithm (WCEGA) is presented. The WCEGA is designed to achieve continuously monitoring of remote areas for a longer time with least power consumption. Method: The cluster-based algorithm consists two phases: cluster formation and data transmission. In cluster formation, selection of cluster heads and cluster members areas based on energy and coverage efficient parameters. The governing parameters are residual energy, overlapping degree, node density and neighbor’s degree. The data transmission between CHs and sink is based on well-known evolution search algorithm i.e. Genetic Algorithm. Conclusion: The results of WCEGA are compared with other established protocols and shows significant improvement of full coverage and lifetime approximately 40% and 45% respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Ali Norouzi ◽  
A. Halim Zaim

There are several applications known for wireless sensor networks (WSN), and such variety demands improvement of the currently available protocols and the specific parameters. Some notable parameters are lifetime of network and energy consumption for routing which play key role in every application. Genetic algorithm is one of the nonlinear optimization methods and relatively better option thanks to its efficiency for large scale applications and that the final formula can be modified by operators. The present survey tries to exert a comprehensive improvement in all operational stages of a WSN including node placement, network coverage, clustering, and data aggregation and achieve an ideal set of parameters of routing and application based WSN. Using genetic algorithm and based on the results of simulations in NS, a specific fitness function was achieved, optimized, and customized for all the operational stages of WSNs.


Sign in / Sign up

Export Citation Format

Share Document