scholarly journals On Speed Control of a Permanent Magnet Synchronous Motor with Current Predictive Compensation

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 65 ◽  
Author(s):  
Meiling Tang ◽  
Shengxian Zhuang

In this study, a current model predictive controller (MPC) is designed for a permanent magnet synchronous motor (PMSM) where the speed of the motor can be regulated precisely. First, the mathematical model, the specifications, and the drive topology of the PMSM are introduced, followed by an elaboration of the design of the MPC. The MPC is then used to predict the current in a discrete-time calculation. The phase current at the next sampling step can be estimated to compensate the current errors, thereby modifying the three-phase currents of the motor. Next, Simulink modeling of the MPC algorithm is given, with three-phase current waveforms compared when the motor is operated under the designed MPC and a traditional vector control for PMSM. Finally, the speed responses are measured when the motor is controlled by traditional control methods and the MPC approach under varied speed references and loads. In comparison with traditional controllers, both the simulation and the experimental results suggest that the MPC for the PMSM can improve the speed-tracking performance of the motor and that this motor has a fast speed response and small steady-state errors under the rated load.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1583
Author(s):  
Wei-Tse Kao ◽  
Jonq-Chin Hwang ◽  
Jia-En Liu

This study aimed to develop a three-phase permanent-magnet synchronous motor drive system with improvement in current harmonics. Considering the harmonic components in the induced electromotive force of a permanent-magnet synchronous motor, the offline response of the induced electromotive force (EMF) was measured for fast Fourier analysis, the main harmonic components were obtained, and the voltage required to reduce the current harmonic components in the corresponding direct (d-axis) and quadrature (q-axis) axes was calculated. In the closed-loop control of the direct axis and quadrature axis current in the rotor reference frame, the compensation amount of the induced EMF with harmonic components was added. Compared with the online adjustment of current harmonic injection, this simplifies the control strategy. The drive system used a 32-bit digital signal processor (DSP) TMS320F28069 as the control core, the control strategies were implemented in software, and a resolver with a resolver-to-digital converter (RDC) was used for the feedback of angular position and speed. The actual measurement results of the current harmonic improvement control show that the total harmonic distortion of the three-phase current was reduced from 5.30% to 2.31%, and the electromagnetic torque ripple was reduced from 15.28% to 5.98%. The actual measurement results verify the feasibility of this method.


2020 ◽  
Vol 8 (6) ◽  
pp. 5317-5321

Present research demonstrates an experimental work and simulation of FPGA based PMSM drives consists of PI and Fuzzy logic controller, for speed control under load, zero load and random change in load conditions. It also delineates the overall performance of a closed loop vector Permanent Magnet Synchronous Motor (PMSM) drive consisting of two loops, current for inner and speed for outer loops for better speed tracking systems. The resistive load which is connected across the armature of dc shunt motor and coupled with PMSM is varied. The resultant speed and torque are studied in details. Result showed that in case of fuzzy logic controller, the peak overshoot and settling time can be minimized. This FPGA based PMSM drives can be used for different paramount application under constant speed.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022073
Author(s):  
Yuan Cao ◽  
Fuzhi Jing ◽  
Heng Wan

Abstract Permanent Magnet Synchronous Motor (Permanent Magnet Synchronous Motor, hereinafter referred to as PMSM) has the characteristics of small size, high efficiency, high power density and fast dynamic response, etc., and more and more applications in the transportation industry. This also has higher and higher requirements for the reliability and security of PMSM drivers. In this paper, the fault tolerant control strategy of PMSM based on three phase four switch inverter is proposed based on vector control and the simulation verification is carried out.


Sign in / Sign up

Export Citation Format

Share Document