scholarly journals Attenuation of Wave Energy Due to Mangrove Vegetation off Mumbai, India

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4286 ◽  
Author(s):  
Samiksha S. V. ◽  
P. Vethamony ◽  
Prasad K. Bhaskaran ◽  
P. Pednekar ◽  
M. Jishad ◽  
...  

Coastal regions of India are prone to sea level rise, cyclones, storm surges, and human-induced activities, resulting in flood, erosion, and inundation, and some of these impacts could be attributed to climate change. Mangroves play a very protective role against some of these coastal hazards. The primary aim of the study was to estimate wave energy attenuation by mangrove vegetation using modeling, and to validate the model results with measurements conducted off Mumbai coast, where a mangrove forest is present. Wave measurements were carried out from 5–8 August 2015 at three locations in a transect normal to the coast using surface-mounted pressure-level sensors in spring tide conditions. The measured data presented wave height attenuation of the order of 52%. Model set-up and sensitivity analyses were conducted to understand the model performance with respect to vegetation parameters. It was observed that wave attenuation increases with an increase in drag coefficient, vegetation density, and stem diameter. For a typical set-up in the Mumbai coastal region having a vegetation density of 0.175 per m2, stem diameter of 0.3 m, and drag coefficient varying from 0.4 to 1.5, the model reproduced attenuation ranging from 49% to 55%, which matches reasonably well with the measured data. Spectral analysis performed for the cases with and without vegetation very clearly portrays energy dissipation in the vegetation area. This study also highlights the importance of climate change and mangrove vegetation.

2018 ◽  
Author(s):  
Samiksha S. Volvaiker ◽  
Ponnumony Vethamony ◽  
Prasad K. Bhaskaran ◽  
Premanand Pednekar ◽  
Mhamsa Jishad ◽  
...  

Abstract. Coastal regions of India are prone to sea level rise, cyclones, storm surges and human induced activities, resulting in flood, erosion and inundation. The primary aim of the study is to estimate wave energy attenuation by mangrove vegetation using SWAN model, and validate the model results with measurements for the Mumbai coastal region. Wave measurements were carried out during 5–8 August 2015 at 3 locations in a transect normal to the coast using surface mounted pressure level sensors in spring tide conditions. The measured data presents wave height attenuation of the order of 52 %. The study shows a linear relationship between wave height attenuation and gradual changes in water level in the nearshore region, in phase with the tides. Model set-up and sensitivity analyses were conducted to understand the model performance to vegetation parameters. It was observed that wave attenuation increases with an increase in drag coefficient, vegetation density and stem diameter. For a typical set-up for Mumbai coastal region having vegetation density of 0.175 per m2, stem diameter of 0.3 m and drag coefficient varying from 0.4 to 1.5, the model reproduced attenuation, ranging from 49 to 55 %, which matches well with the measured data. Spectral analysis performed for the cases with and without vegetation very clearly portrays energy dissipation in the vegetation area. This study has the potential of improving the quality of wave prediction in vegetation areas, especially during monsoon season and extreme weather events.


2017 ◽  
Author(s):  
Samiksha S. Volvaiker ◽  
Ponnumony Vethamony ◽  
Prasad K. Bhaskaran ◽  
Premanand Pednekar ◽  
MHamsa Jishad ◽  
...  

Abstract. Coastal regions of India are prone to sea level rise, cyclones, storm surges and human induced activities, resulting in flood, erosion, and inundation. The primary aim of the study is to estimate wave attenuation by mangrove vegetation using SWAN model in standalone mode, as well as SWAN nested with WW3 model for the Mumbai coastal region. To substantiate the model results, wave measurements were carried out during 5–8 August 2015 at 3 locations in a transect normal to the coast using surface mounted pressure level sensors under spring tide conditions. The measured data presents wave height attenuation of the order of 52 %. The study shows a linear relationship between wave height attenuation and gradual changes in water level in the nearshore region, in phase with the tides. Model set-up and sensitivity analyses were conducted to understand the model performance to vegetation parameters. It was observed that wave attenuation increased with an increase in drag coefficient (Cd), vegetation density, and stem diameter. For a typical set-up for Mumbai coastal region having vegetation density of 0.175 per m2, stem diameter of 0.3 m and drag coefficient varying from 0.4 to 1.5, the model reproduced attenuation, ranging from 49 to 55 %, which matches well with the measured data. Spectral analysis performed for the cases with and without vegetation very clearly portrays energy dissipation in the vegetation area as well as spectral changes. This study has the potential of improving the quality of wave prediction in vegetation areas, especially during monsoon season and extreme weather events.


Author(s):  
Gaelle Faivre ◽  
Oriane Lagrabe ◽  
Krishna Kotra ◽  
Rodger Tomlinson ◽  
Brendan Mackey ◽  
...  

Coral reefs encircle most of the islands in Vanuatu and provide natural breakwaters for coastal communities by reducing wave energy arriving at the shoreline acting to control both inundation and erosion. Climate Change is projected to both exacerbate coastal hazards and endanger corals. The aim of this paper is to better understand the parameters that govern hydrodynamics on fringing reef systems. The interaction between the depth, waves and currents are studied from measurements conducted in Erakor lagoon, Vanuatu.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/mPrG6NWL4dM


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1142
Author(s):  
Juliano Calil ◽  
Geraldine Fauville ◽  
Anna Carolina Muller Queiroz ◽  
Kelly L. Leo ◽  
Alyssa G. Newton Mann ◽  
...  

As coastal communities around the globe contend with the impacts of climate change including coastal hazards such as sea level rise and more frequent coastal storms, educating stakeholders and the general public has become essential in order to adapt to and mitigate these risks. Communicating SLR and other coastal risks is not a simple task. First, SLR is a phenomenon that is abstract as it is physically distant from many people; second, the rise of the sea is a slow and temporally distant process which makes this issue psychologically distant from our everyday life. Virtual reality (VR) simulations may offer a way to overcome some of these challenges, enabling users to learn key principles related to climate change and coastal risks in an immersive, interactive, and safe learning environment. This article first presents the literature on environmental issues communication and engagement; second, it introduces VR technology evolution and expands the discussion on VR application for environmental literacy. We then provide an account of how three coastal communities have used VR experiences developed by multidisciplinary teams—including residents—to support communication and community outreach focused on SLR and discuss their implications.


Water Policy ◽  
2013 ◽  
Vol 15 (S1) ◽  
pp. 9-25 ◽  
Author(s):  
Bharat R. Sharma ◽  
Devaraj de Condappa

The topography of the Ganges basin is highly variable, with the steep mountainous region of the Himalaya upstream and the large fertile plains in eastern India and Bangladesh downstream. The contribution from the glaciers to streamflows is supposed to be significant but there is uncertainty surrounding the impact of climate change on glaciers. An application of the Water Evaluation and Planning model was set up which contained an experimental glaciers module. The model also examined the possible impacts of an increase in temperature. The contribution from glaciated areas is significant (60–75%) in the Upper Ganges but reduces downstream, falling to about 19% at Farakka. Climate change-induced rise in temperature logically increases the quantity of snow and ice that melts in glaciated areas. However, this impact decreases from upstream (+8% to +26% at Tehri dam) to downstream (+1% to +4% at Farakka). Such increases in streamflows may create flood events more frequently, or of higher magnitude, in the upper reaches. Potential strategies to exploit this additional water may include the construction of new dams/reservoir storage and the development of groundwater in the basin through managed aquifer recharge. The riparian states of India, Nepal and Bangladesh could harness this opportunity to alleviate physical water scarcity and improve productivity.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 545
Author(s):  
Alexis K. Mills ◽  
Peter Ruggiero ◽  
John P. Bolte ◽  
Katherine A. Serafin ◽  
Eva Lipiec

Coastal communities face heightened risk to coastal flooding and erosion hazards due to sea-level rise, changing storminess patterns, and evolving human development pressures. Incorporating uncertainty associated with both climate change and the range of possible adaptation measures is essential for projecting the evolving exposure to coastal flooding and erosion, as well as associated community vulnerability through time. A spatially explicit agent-based modeling platform, that provides a scenario-based framework for examining interactions between human and natural systems across a landscape, was used in Tillamook County, OR (USA) to explore strategies that may reduce exposure to coastal hazards within the context of climate change. Probabilistic simulations of extreme water levels were used to assess the impacts of variable projections of sea-level rise and storminess both as individual climate drivers and under a range of integrated climate change scenarios through the end of the century. Additionally, policy drivers, modeled both as individual management decisions and as policies integrated within adaptation scenarios, captured variability in possible human response to increased hazards risk. The relative contribution of variability and uncertainty from both climate change and policy decisions was quantified using three stakeholder relevant landscape performance metrics related to flooding, erosion, and recreational beach accessibility. In general, policy decisions introduced greater variability and uncertainty to the impacts of coastal hazards than climate change uncertainty. Quantifying uncertainty across a suite of coproduced performance metrics can help determine the relative impact of management decisions on the adaptive capacity of communities under future climate scenarios.


Author(s):  
Brian Stiber ◽  
Asfaw Beyene

Climate change, drought, population growth and increased energy and water costs are all forces driving exploration into alternative, sustainable resources. The abundance of untapped wave energy often presents an opportunity for research into exploiting this resource to meet the energy and water needs of populated coastal regions. This paper investigates the potential and impact of harnessing wave energy for the purpose of seawater desalination. First the SWAN wave modeling software was used to evaluate the size and character of the wave resource. These data are used to estimate the cost of water for wave-powered desalination taking a specific region as a case example. The results indicate that, although the cost of water from this technology is not economically competitive at this time, the large available resource confirms the viability of significantly supplementing current freshwater supplies. The results also confirm that research into the feasibility of wave power as a source of energy and water in the area is warranted, particularly as water and energy become more scarce and expensive coinciding with the maturity of commercial wave energy conversion.


2021 ◽  
Author(s):  
Ramtin Sabeti ◽  
Mohammad Heidarzadeh

<p>Landslide-generated waves have been major threats to coastal areas and have led to destruction and casualties. Their importance is undisputed, most recently demonstrated by the 2018 Anak Krakatau tsunami, causing several hundred fatalities. The accurate prediction of the maximum initial amplitude of landslide waves (<em>η<sub>max</sub></em>) around the source region is a vital hazard indicator for coastal impact assessment. Laboratory experiments, analytical solutions and numerical modelling are three major methods to investigate the (<em>η<sub>max</sub></em>). However, the numerical modelling approach provides a more flexible and cost- and time-efficient tool. This research presents a numerical simulation of tsunamis due to rigid landslides with consideration of submerged conditions. In particular, this simulation focuses on studying the effect of landslide parameters on <em>η<sub>max</sub>.</em> Results of simulations are compared with our conducted physical experiments at the Brunel University London (UK) to validate the numerical model.</p><p>We employ the fully three-dimensional computational fluid dynamics package, FLOW-3D Hydro for modelling the landslide-generated waves. This software benefit from the Volume of Fluid Method (VOF) as the numerical technique for tracking and locating the free surface. The geometry of the simulation is set up according to the wave tank of physical experiments (i.e. 0.26 m wide, 0.50 m deep and 4.0 m). In order to calibrate the simulation model based on the laboratory measurements, the friction coefficient between solid block and incline is changed to 0.41; likewise, the terminal velocity of the landslide is set to 0.87 m/s. Good agreement between the numerical solutions and the experimental results is found. Sensitivity analyses of landslide parameters (e.g. slide volume, water depth, etc.) on <em>η<sub>max </sub></em>are performed. Dimensionless parameters are employed to study the sensitivity of the initial landslide waves to various landslide parameters.</p>


Author(s):  
K. Qu ◽  
G. Y. Lan ◽  
S. Kraatz ◽  
W. Y. Sun ◽  
B. Deng ◽  
...  

The extreme surges and waves generated in tsunamis can cause devastating damages to coastal infrastructures and threaten the intactness of coastal communities. After the 2004 Indian Ocean tsunami, extensive physical experiments and numerical simulations have been conducted to understand the wave attenuation of tsunami waves due to coastal forests. Nearly all prior works used solitary waves as the tsunami wave model, but the spatial-temporal scales of realistic tsunamis differ drastically from that of solitary waves in both wave period and wavelength. More recent work has questioned the applicability of solitary waves and been looking towards more realistic tsunami wave models. Therefore, aiming to achieve more realistic and accurate results, this study will use a parameterized tsunami-like wave based on wave observations during the 2011 Japan tsunami to study the wave attenuation of a tsunami wave by emergent rigid vegetation. This study uses a high-resolution numerical wave tank based on the non-hydrostatic wave model (NHWAVE). This work examines effects of prominent factors, such as wave height, water depth, vegetation density and width, on the wave attenuation efficiency of emergent rigid vegetation. Results indicate that the vegetation patch can dissipate a considerable amount of the total wave energy of the tsunami-like wave. However, the tsunami-like wave has a higher total wave energy, but also a lower wave energy dissipation rate. Results show that using a solitary instead of a tsunami-like wave profile can overestimate the wave attenuation efficiency of the coastal forest.


Sign in / Sign up

Export Citation Format

Share Document