scholarly journals Environmental Performance of Innovative Ground-Source Heat Pumps with PCM Energy Storage

Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 117 ◽  
Author(s):  
Emanuele Bonamente ◽  
Andrea Aquino

Space conditioning is responsible for the majority of carbon dioxide emission and fossil fuel consumption during a building’s life cycle. The exploitation of renewable energy sources, together with efficiency enhancement, is the most promising solution. An innovative layout for ground-source heat pumps, featuring upstream thermal energy storage (uTES), was already proposed and proved to be as effective as conventional systems while requiring lower impact geothermal installations thanks to its ability to decouple ground and heat-pump energy fluxes. This work presents further improvements to the layout, obtained using more compact and efficient thermal energy storage containing phase-change materials (PCMs). The switch from sensible- to latent-heat storage has the twofold benefit of dramatically reducing the volume of storage (by a factor of approximately 10) and increasing the coefficient of performance of the heat pump. During the daily cycle, the PCMs are continuously melted/solidified, however, the average storage temperature remains approximately constant, allowing the heat pump to operate closer to its maximum efficiency. A life cycle assessment (LCA) was performed to study the environmental benefits of introducing PCM-uTES during the entire life cycle of the system in a comparative approach.

Geothermics ◽  
2003 ◽  
Vol 32 (4-6) ◽  
pp. 579-588 ◽  
Author(s):  
Burkhard Sanner ◽  
Constantine Karytsas ◽  
Dimitrios Mendrinos ◽  
Ladislaus Rybach

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5709
Author(s):  
Zhengjie You ◽  
Michel Zade ◽  
Babu Kumaran Kumaran Nalini ◽  
Peter Tzscheutschler

With the increasing penetration of intermittent renewable energy generation, there is a growing demand to use the inherent flexibility within buildings to absorb renewable related disruptions. Heat pumps play a particularly important role, as they account for a high share of electricity consumption in residential units. The most common way of quantifying the flexibility is by considering the response of the building or the household appliances to external penalty signals. However, this approach neither accounts for the use cases of flexibility trading nor considers its impact on the prosumer comfort, when the heat pump should cover the stochastic domestic hot water (DHW) consumption. Therefore, in this paper, a new approach to quantifying the flexibility potential of residential heat pumps is proposed. This methodology enables the prosumers themselves to generate and submit the operating plan of the heat pump to the system operator and trade the alternative operating plans of the heat pump on the flexibility market. In addition, the impact of the flexibility provision on the prosumer comfort is investigated by calculating the warm water temperature drops in the thermal energy storage given heat demand forecast errors. The results show that the approach with constant capacity reservation in the thermal energy storage provides the best solution, with an average of 2.5 min unsatisfactory time per day and a maximum temperature drop of 2.3∘C.


2019 ◽  
Vol 111 ◽  
pp. 06002
Author(s):  
Christoph Schellenberg ◽  
Laurentiu Dimache ◽  
John Lohan

Grid-edge technologies (GET) enable and amplify the impact of three emerging energy system trends: electrification, decentralisation, and digitalisation. Smart grid integrated heat pumps with thermal energy storage enable both the electrification of heating and decentralised demand response. Such power-to-heat technologies simultaneously decarbonise heating and facilitate the grid integration of more variable renewable electricity in a cost-effective manner. This may help to explore and exploit untapped wind generation potential. This study explores the flexibility potential of a domestic scale heat pump with thermal energy storage in a typical Irish home in December. The system is simulated to investigate demand-side flexibility and sensitivity to both heat pump and thermal storage capacities for three days with wind energy shares of 7%, 25%, and 60%. Using real-time electricity prices and optimising for operational cost, the implicit demand flexibility potential is quantified with different combinations of heat pump power and storage capacity. The results suggest that 33-100% of critical loads can be shifted dynamically to low-cost periods. Optimised system design depends on local climate, heat demand profile, optimisation horizon, and the type of heat pump. Optimisation with genetic algorithm yielded near-global optimal results approximately 40 times faster than with exhaustive enumeration.


Sign in / Sign up

Export Citation Format

Share Document