scholarly journals Flexibility Estimation of Residential Heat Pumps under Heat Demand Uncertainty

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5709
Author(s):  
Zhengjie You ◽  
Michel Zade ◽  
Babu Kumaran Kumaran Nalini ◽  
Peter Tzscheutschler

With the increasing penetration of intermittent renewable energy generation, there is a growing demand to use the inherent flexibility within buildings to absorb renewable related disruptions. Heat pumps play a particularly important role, as they account for a high share of electricity consumption in residential units. The most common way of quantifying the flexibility is by considering the response of the building or the household appliances to external penalty signals. However, this approach neither accounts for the use cases of flexibility trading nor considers its impact on the prosumer comfort, when the heat pump should cover the stochastic domestic hot water (DHW) consumption. Therefore, in this paper, a new approach to quantifying the flexibility potential of residential heat pumps is proposed. This methodology enables the prosumers themselves to generate and submit the operating plan of the heat pump to the system operator and trade the alternative operating plans of the heat pump on the flexibility market. In addition, the impact of the flexibility provision on the prosumer comfort is investigated by calculating the warm water temperature drops in the thermal energy storage given heat demand forecast errors. The results show that the approach with constant capacity reservation in the thermal energy storage provides the best solution, with an average of 2.5 min unsatisfactory time per day and a maximum temperature drop of 2.3∘C.

2019 ◽  
Vol 111 ◽  
pp. 06002
Author(s):  
Christoph Schellenberg ◽  
Laurentiu Dimache ◽  
John Lohan

Grid-edge technologies (GET) enable and amplify the impact of three emerging energy system trends: electrification, decentralisation, and digitalisation. Smart grid integrated heat pumps with thermal energy storage enable both the electrification of heating and decentralised demand response. Such power-to-heat technologies simultaneously decarbonise heating and facilitate the grid integration of more variable renewable electricity in a cost-effective manner. This may help to explore and exploit untapped wind generation potential. This study explores the flexibility potential of a domestic scale heat pump with thermal energy storage in a typical Irish home in December. The system is simulated to investigate demand-side flexibility and sensitivity to both heat pump and thermal storage capacities for three days with wind energy shares of 7%, 25%, and 60%. Using real-time electricity prices and optimising for operational cost, the implicit demand flexibility potential is quantified with different combinations of heat pump power and storage capacity. The results suggest that 33-100% of critical loads can be shifted dynamically to low-cost periods. Optimised system design depends on local climate, heat demand profile, optimisation horizon, and the type of heat pump. Optimisation with genetic algorithm yielded near-global optimal results approximately 40 times faster than with exhaustive enumeration.


Author(s):  
Michael J. Kazmierczak ◽  
Sreenidhi Krishnamoorthy ◽  
Abhishek Gupta

Experiments were performed to charge either cold or hot water thermal energy storage tanks using a heat exchanger equipped with multiple thermoelectric (TE) modules. The primary objective was to design a simple, but effective, modular Peltier heat pump system component to provide chilled or hot water for domestic use at the appliance level, and when arranged in multiple unit combinations, a system that can potentially satisfy small home cooling and heating requirements. Moreover, when the TEs are directly energized using solar PV panels, the system provides a renewable, pollution free and off-the-grid solution to supplement home energy needs. The present work focuses on the design and testing of a thermoelectric heat exchanger component that consists of two water channels machined from two aluminum plates with an array of three or five thermoelectric modules placed in between to transiently cool and/or heat the water in the thermal energy storage tank. The water passing over either the cold or hot side of the TE modules is recirculated to charge the cold or hot thermal storage tank, respectively. The temperatures in the prototype Peltier heat exchanger test component and thermal energy water storage tank were measured during both cold tank charging and hot tank charging operation. The thermal efficiencies of TE heat pump cooling/heating system are reported. The effects of TE power input, number of TE units and rate of fluid flow are studied.


2020 ◽  
Vol 10 (21) ◽  
pp. 7873
Author(s):  
Johann Emhofer ◽  
Klemens Marx ◽  
Tilman Barz ◽  
Felix Hochwallner ◽  
Luisa F. Cabeza ◽  
...  

Integration of a three-media refrigerant/phase change material (PCM)/water heat exchanger (RPW-HEX) in the hot superheated section of a heat pump (HP) system is a promising approach to save energy for domestic hot water (DHW) generation in multi-family houses. The RPW-HEX works as a desuperheater and as a latent thermal energy storage in the system. The latent thermal energy storage is charged during heating and cooling operation and discharged for DHW production. For this purpose, the water side of the RPW-HEX is connected to decentralized DHW storage devices. DHW consumption, building standards and climate, energy prices, material costs, and production costs are the constraints for the selection of the optimal storage size and RPW-HEX design. This contribution presents the techno-economic analysis of the RPW-HEX integrated into an R32 air source HP. With the aid of experimentally validated dynamic computer models, the optimal sizing of the RPW-HEX storage is discussed to maximize energy savings and to minimize the investment costs. The results are discussed in the context of a return of investment analysis, practical implementation aspects and energetic potential of the novel technology.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 117 ◽  
Author(s):  
Emanuele Bonamente ◽  
Andrea Aquino

Space conditioning is responsible for the majority of carbon dioxide emission and fossil fuel consumption during a building’s life cycle. The exploitation of renewable energy sources, together with efficiency enhancement, is the most promising solution. An innovative layout for ground-source heat pumps, featuring upstream thermal energy storage (uTES), was already proposed and proved to be as effective as conventional systems while requiring lower impact geothermal installations thanks to its ability to decouple ground and heat-pump energy fluxes. This work presents further improvements to the layout, obtained using more compact and efficient thermal energy storage containing phase-change materials (PCMs). The switch from sensible- to latent-heat storage has the twofold benefit of dramatically reducing the volume of storage (by a factor of approximately 10) and increasing the coefficient of performance of the heat pump. During the daily cycle, the PCMs are continuously melted/solidified, however, the average storage temperature remains approximately constant, allowing the heat pump to operate closer to its maximum efficiency. A life cycle assessment (LCA) was performed to study the environmental benefits of introducing PCM-uTES during the entire life cycle of the system in a comparative approach.


Author(s):  
Michael J. Kazmierczak ◽  
Sreenidhi Krishnamoorthy ◽  
Abhishek Gupta

Experiments were performed to charge either cold or hot water thermal energy storage tanks using a heat exchanger equipped with multiple thermoelectric (TE) modules. The primary objective was to design a simple, but effective, modular Peltier heat pump system component to provide chilled or hot water for domestic use at the appliance level, and when arranged in multiple unit combinations, a system that can potentially satisfy small home cooling and heating requirements. Moreover, when the TEs are directly energized using solar photovoltaic (PV) panels, the system provides a renewable, pollution-free, and off-the-grid solution to supplement home energy needs. The present work focuses on the design and testing of a thermoelectric heat exchanger component that consists of two water channels machined from two aluminum plates with an array of three, five, or eight thermoelectric modules placed in between to transiently cool and/or heat the water in the thermal energy storage tank. The water passing over either the cold or hot side of the TE modules is recirculated to charge the cold or hot thermal storage tank, respectively. The temperatures in the prototype Peltier heat exchanger test component and thermal energy water storage tank were measured during both cold and hot tank charging operations. The thermal efficiencies of the TE heat pump cooling/heating system are reported. The effects of the TE power input, number of TE units, rate of fluid flow, and heat sink/source temperature are studied.


2021 ◽  
Vol 13 (15) ◽  
pp. 8344
Author(s):  
Jin Zhou ◽  
Zhikai Cui ◽  
Feng Xu ◽  
Guoqiang Zhang

The supply of domestic hot water (DHW) on college and university campuses is indispensable and is also one of the main components of campus energy consumption. The density of residential patterns and similar occupancy behavior of college students make it economical to use centralized systems to cover the DHW demand, and utilization of solar energy can make the systems more economical. Seasonal thermal energy storage (STES) is a promising key technology that can minimize the imbalance between the availability of solar energy and thermal energy demand. In this paper, a solar-assisted ground-coupled heat pump (SAGCHP) system that meets the DHW demand of 960 students was investigated by means of dynamic simulation and energy-economic analysis. The simulation results in terms of the underground heat balance are compared with a standalone GCHP system and a SAGCHP system without STES. Results show that heat recharging operations during university summer and winter breaks (when there are minimal students on campus) lead to improved underground heat balance and energy performance. Finally, a sensitivity analysis on system performance was carried out by varying solar collector arrays. It was found that there exists an optimal value of solar collector area to achieve the lowest system lifecycle cost (LCC).


2021 ◽  
Vol 13 (24) ◽  
pp. 13683
Author(s):  
Zhihua Wang ◽  
Yujia Zhang ◽  
Fenghao Wang ◽  
Guichen Li ◽  
Kaiwen Xu

CO2 air source heat pump (ASHP), as a kind of clean and efficient heating equipment, is a promising solution for domestic hot water and clean heating. However, the promotion of CO2 ASHP encounters a great resistance when it is used for space heating; namely, the return water temperature is too high that cased higher throttle loss, which decreases the COP of the CO2 ASHP unit. To solve this problem, a heating system of CO2 ASHP coupled with thermal energy storage (TES) is developed in this work. The simulation model of the studied system is established using TRNSYS software, and the model is verified by experimental data. Additionally, the performance of the studied system is optimized, and its economy is analyzed by life cycle cost (LCC). The results showed that, compared with the system before optimization, the cost of the optimized system increased, the annual operating cost of the system was reduced, and the COP of the system (COPsys) increased by 7.4%. This research is helpful in improving the application of the CO2 ASHP unit in cold server and cold areas.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4284
Author(s):  
Min-Hwi Kim ◽  
Youngsub An ◽  
Hong-Jin Joo ◽  
Dong-Won Lee ◽  
Jae-Ho Yun

Due to increased grid problems caused by renewable energy systems being used to realize zero energy buildings and communities, the importance of energy sharing and self-sufficiency of renewable energy also increased. In this study, the energy performance of an energy-sharing community was investigated to improve its energy efficiency and renewable energy self-sufficiency. For a case study, a smart village was selected via detailed simulation. In this study, the thermal energy for cooling, heating, and domestic hot water was produced by ground source heat pumps, which were integrated with thermal energy storage (TES) with solar energy systems. We observed that the ST system integrated with TES showed higher self-sufficiency with grid interaction than the PV and PVT systems. This was due to the heat pump system being connected to thermal energy storage, which was operated as an energy storage system. Consequently, we also found that the ST system had a lower operating energy, CO2 emissions, and operating costs compared with the PV and PVT systems.


Sign in / Sign up

Export Citation Format

Share Document