scholarly journals Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1510 ◽  
Author(s):  
Anamarija Falkoni ◽  
Antun Pfeifer ◽  
Goran Krajačić

Croatia aims to achieve 10% of its energy production from the renewable energy sources in the total energy consumption in the transport sector. One of the ways to achieve this goal is by the use of electric vehicles. This work comparatively analyses the financial and social aspects of vehicle-to-grid charging in standard and fast charging mode, their impact on the renewable electricity production and the total electricity consumption regulated through variable electricity prices. Data were taken for the wider urban area of the Dubrovnik region. The assumption is that the Dubrovnik region will be self-sufficient by the year 2050 with 100% renewable electricity production and that all conventional vehicles will be replaced by electric vehicles. This work aims to show that the fast charging based on 10 min time steps offers more opportunities for flexibility and utilization of renewable generation in the energy system than the standard charging based on hourly time step. The results of this work showed the opposite, where in most of the scenarios standard charging provided better results. Replacement of the existing two tariff model in electricity prices with variable electricity prices contributes to the stability of the energy system, providing better regulation of charging and higher opportunities for renewable electricity utilization in standard and fast charging and reduction of charging costs. According to the financial aspects, fast charging is shown to be more expensive, but for the social aspects, it provides electric vehicles with more opportunities for better competition in the market.

2020 ◽  
Author(s):  
Markus Millinger ◽  
Philip Tafarte ◽  
Matthias Jordan ◽  
Alena Hahn ◽  
Kathleen Meisel ◽  
...  

<p>The increase of variable renewable energy sources (VRE), i.e. wind and solar power, may lead to a certain mismatch between power demand and supply. At the same time, in order to decarbonise the heat and transport sectors, power-based solutions are often seen as promising option, through so-called sector coupling. At times when VRE power supply exceeds demand, the surplus power could be used for producing liquid and gaseous electrofuels. The power is used for electrolysis, producing hydrogen, which can in turn be used either directly or combined with a carbon source to produce hydrocarbon fuels.</p><p>Here, we analyse the potential development of surplus power for the case of Germany, at an ambitious VRE expansion until 2050 and perform a cost analysis of electrofuels at different production levels using sorted residual load curves. These are then compared to biofuels and electric vehicles with the aid of an optimisation model, considering both cost- and greenhouse gas (GHG)-optimal options for the main transport sectors in Germany.</p><p>We find that, although hydrocarbon electrofuels are more expensive than their main renewable competitors, i.e. biofuels, they are most likely indispensable in addition for reaching climate targets in transport. However, the electrofuel potential is constrained by the availability of both surplus power and carbon. In fact, the surplus power potential is projected to remain limited even at currently ambitious VRE targets for Germany and carbon availability is lower in an increasingly renewable energy system unless direct air capture is deployed. In addition, as the power mix is likely to contain fossil fuels for decades to come, electrofuels based on power directly from the mix with associated conversion losses would cause higher GHG-emissions than the fossil transport fuel reference until a very high share of renewables in the power source is achieved. In contrast, electric vehicles are a more climate competitive option under the projected power mix with remaining fossil fuel fractions, due to a superior fuel economy and thereby lower costs and emissions.</p><p>As part of the assessment, we quantify the greenhouse gas abatement costs for different well-to-wheel pathways and provide an analysis and recommendations for a transition to sustainable transport.</p>


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4423 ◽  
Author(s):  
Géremi Gilson Dranka ◽  
Paula Ferreira

Shaping a secure and sustainable energy future may require a set of transformations in the global energy sector. Although several studies have recognized the importance of Electric Vehicles (EVs) for power systems, no large-scale studies have been performed to assess the impact of this technology in energy systems combining a diverse set of renewable energies for electricity production and biofuels in the transportation sector such as the case of Brazil. This research makes several noteworthy contributions to the current literature, including not only the evaluation of the main impacts of EVs’ penetration in a renewable electricity system but also a Life-Cycle Assessment (LCA) that estimates the overall level of CO2 emissions resulted from the EVs integration. Findings of this study indicated a clear positive effect of increasing the share of EVs on reducing the overall level of CO2 emissions. This is, however, highly dependent on the share of Renewable Energy Sources (RES) in the power system and the use of biofuels in the transport sector but also on the credits resulting from the battery recycling materials credit and battery reuse credit. Our conclusions underline the importance of such studies in providing support for the governmental discussions regarding potential synergies in the use of bioresources between transport and electricity sectors.


2019 ◽  
Vol 29 (1) ◽  
pp. 147-168 ◽  
Author(s):  
Stefan Wurster ◽  
Christian Hagemann

In the face of accelerating climate change, the transition towards a nonnuclear renewable energy system represents a key political challenge, which can be aggravated by the increasing energy supply uncertainty created by the shift away from fossil fuels. In this article, we conduct a comparison of the expansion of renewable energy sources in Austria, Belgium, and Germany at the level of their subnational units (federal states), thereby covering three economically very important central European federal European Union members. We consider potentially influential factors in a fuzzy-set qualitative comparative analysis: In addition to state-specific socioeconomic and geographical characteristics, political factors, such as parties in government, and specific energy-related policy instruments are included in the analysis. We find that a high potential for renewable electricity expansion in combination with low financial prosperity is most likely to lead to a successful expansion of renewable electricity production from wind and photovoltaics.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5812
Author(s):  
Timo Kern ◽  
Patrick Dossow ◽  
Serafin von Roon

Replacing traditional internal combustion engine vehicles with electric vehicles (EVs) proves to be challenging for the transport sector, particularly due to the higher initial investment. As EVs could be more profitable by participating in the electricity markets, the aim of this paper is to investigate revenue potentials when marketing bidirectionally chargeable electric vehicles in the spot market. To simulate a realistic marketing behavior of electric vehicles, a mixed integer linear, rolling horizon optimization model is formulated considering real trading times in the day-ahead and intraday market. Results suggest that revenue potentials are strongly dependent on the EV pool, the user behavior and the regulatory framework. Modeled potential revenues of EVs of current average size marketed with 2019 German day-ahead prices are found to be at around 200 €/EV/a, which is comparable to other findings in literature, and go up to 500 €/EV/a for consecutive trading in German day-ahead and intraday markets. For future EVs with larger batteries and higher efficiencies, potential revenues for current market prices can reach up to 1300 €/EV/a. This study finds that revenues differ widely for different European countries and future perspectives. The identified revenues give EV owners a clear incentive to participate in vehicle-to-grid use cases, thereby increasing much needed flexibility for the energy system of the future.


Author(s):  
Mohamad Nassereddine

AbstractRenewable energy sources are widely installed across countries. In recent years, the capacity of the installed renewable network supports large percentage of the required electrical loads. The relying on renewable energy sources to support the required electrical loads could have a catastrophic impact on the network stability under sudden change in weather conditions. Also, the recent deployment of fast charging stations for electric vehicles adds additional load burden on the electrical work. The fast charging stations require large amount of power for short period. This major increase in power load with the presence of renewable energy generation, increases the risk of power failure/outage due to overload scenarios. To mitigate the issue, the paper introduces the machine learning roles to ensure network stability and reliability always maintained. The paper contains valuable information on the data collection devises within the power network, how these data can be used to ensure system stability. The paper introduces the architect for the machine learning algorithm to monitor and manage the installed renewable energy sources and fast charging stations for optimum power grid network stability. Case study is included.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 2
Author(s):  
Elisavet Koutsi ◽  
Sotirios Deligiannis ◽  
Georgia Athanasiadou ◽  
Dimitra Zarbouti ◽  
George Tsoulos

During the last few decades, electric vehicles (EVs) have emerged as a promising sustainable alternative to traditional fuel cars. The work presented here is carried out in the context of the Horizon 2020 project MERLON and targets the impact of EVs on electrical grid load profiles, while considering both grid-to-vehicle (G2V) and vehicle-to-grid (V2G) operation modes. Three different charging policies are considered: the uncontrolled charging, which acts as a reference scenario, and two strategies that fall under the umbrella of individual charging policies based on price incentive strategies. Electricity prices along with the EV user preferences are taken into account for both charging (G2V) and discharging (V2G) operations, allowing for more realistic scenarios to be considered.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 534
Author(s):  
Laura Felício ◽  
Sofia T. Henriques ◽  
André Serrenho ◽  
Tiago Domingos ◽  
Tânia Sousa

We use the societal exergy analysis to identify periods and factors controlling efficiency dilution and carbon deepening of electricity in Portugal from 1900 to 2014. Besides estimating the carbon intensity of electricity production, we propose a new indicator, the carbon intensity of electricity use, which quantifies CO2/kWh of electricity derived useful exergy. Results show final to useful efficiency dilution until World War I (50% to 30%) due to a decrease in share of the high-efficiency transport sector and from mid-1940s to 1960 and mid-1990s onwards (58% to 47% and 47% to 40%) due to an increase in share of the low efficiency commercial and residential sector. Decarbonization from 1900 to mid-1960s, with carbon intensities of electricity production and use dropping respectively from 12.8 to 0.2 and from 33.6 to 0.4 kg CO2/kWh due to an increase in thermoelectricity efficiencies and an increase in share of hydro. Then, a period of carbon deepening until 1990 with carbon intensities tripling due to a shift in shares from hydro to thermoelectricity and more recently a period of decarbonization with carbon intensities decreasing to 0.35 and 0.9 kg CO2/kWh, due to the increase in renewable electricity despite a dilution in final to useful efficiency.


2015 ◽  
Vol 2 (4) ◽  
pp. 1-22 ◽  
Author(s):  
Rafael Diaz ◽  
Joshua G. Behr ◽  
Rafael Landaeta ◽  
Francesco Longo ◽  
Letizia Nicoletti

U.S. regions are expected to follow the national trend towards investment in renewable energy as part of their electricity portfolio. The progress of energy portfolios that typically involves traditional methods, such as centralized nuclear and coal-fired generation, and towards cleaner- and renewable-source generation will impact economic growth and public health. Renewable electricity production must strike a balance among cost, reliability, and compatibility. The economic and health benefits obtained from developing an efficient energy portfolio make renewable energy alternatives an important consideration for regions endowed with natural resources. A portfolio mix of production method that considers the economic benefits while limiting adverse health and environmental impacts is attractive. This research proposes a System Dynamics simulation framework to support policy-making efforts in assessing the impact of energy portfolios. The authors demonstrate the utility of the framework by means of analyzing data that pertain to the U.S. Hampton Roads - Peninsula Region.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3634
Author(s):  
Daniele Lerede ◽  
Chiara Bustreo ◽  
Francesco Gracceva ◽  
Yolanda Lechón ◽  
Laura Savoldi

The European Roadmap towards the production of electricity from nuclear fusion foresees the potential availability of nuclear fusion power plants (NFPPs) in the second half of this century. The possible penetration of that technology, typically addressed by using the global energy system EUROFusion TIMES Model (ETM), will depend, among other aspects, on its costs compared to those of the other available technologies for electricity production, and on the future electricity demand. This paper focuses on the ongoing electrification process of the transport sector, with special attention devoted to road transport. A survey on the present and forthcoming technologies, as foreseen by several manufacturers and other models, and an international vehicle database are taken into account to develop the new road transport module, then implemented and harmonized inside ETM. Following three different storylines, the computed results are presented in terms of the evolution of the road transport demand in the next decades, fleet composition and CO 2 emissions. The ETM results are in line with many other studies. On one hand, they highlight, for the European road transport energy consumption pattern, the need for dramatic changes in the transport market, if the most ambitious environmental goals are to be pursued. On the other hand, the results also show that NFPP adoption on a commercial scale could be justified within the current projection of the investment costs, if the deep penetration of electricity in the road transport sector also occurs.


2021 ◽  
pp. 519-562
Author(s):  
Manish Ram ◽  
Dmitrii Bogdanov ◽  
Arman Aghahosseini ◽  
Siavash Khalili ◽  
Michael Child ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document