scholarly journals Performance Study on Methanol Steam Reforming Rib Micro-Reactor with Waste Heat Recovery

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1564 ◽  
Author(s):  
Guoqiang Wang ◽  
Feng Wang ◽  
Bohong Chen

Automobile exhaust heat recovery is considered to be an effective means to enhance fuel utilization. The catalytic production of hydrogen by methanol steam reforming is an attractive option for onboard mobile applications, due to its many advantages. However, the reformers of conventional packed bed type suffer from axial temperature gradients and cold spots resulting from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. A novel rib microreactor was designed for the hydrogen production from methanol steam reforming heated by automobile exhaust, and the effect of inlet exhaust and methanol steam on reactor performance was numerically analyzed in detail, with computational fluid dynamics. The results showed that the best operating parameters were the counter flow, water-to-alcohol (W/A) of 1.3, exhaust inlet velocity of 1.1 m/s, and exhaust inlet temperature of 773 K, when the inlet velocity and inlet temperature of the reactant were 0.1 m/s and 493 K, respectively. At this condition, a methanol conversion of 99.4% and thermal efficiency of 28% were achieved, together with a hydrogen content of 69.6%.

Author(s):  
Akshay Khadse ◽  
Lauren Blanchette ◽  
Jayanta Kapat ◽  
Subith Vasu ◽  
Kareem Ahmed

For the application of waste heat recovery (WHR), supercritical CO2 (S-CO2) Brayton power cycles offer significant suitable advantages such as compactness, low capital cost and applicable to a broad range of heat source temperatures. The current study is focused on thermodynamic modelling and optimization of Recuperated (RC) and Recuperated Recompression (RRC) S-CO2 Brayton cycles for exhaust heat recovery from a next generation heavy duty simple cycle gas turbine using a genetic algorithm. The Genetic Algorithm (GA) is mainly based on bio-inspired operators such as crossover, mutation and selection. This non-gradient based algorithm yields a simultaneous optimization of key S-CO2 Brayton cycle decision variables such as turbine inlet temperature, pinch point temperature difference, compressor pressure ratio. It also outputs optimized mass flow rate of CO2 for the fixed mass flow rate and temperature of the exhaust gas. The main goal of the optimization is to maximize power out of the exhaust stream which makes it single objective optimization. The optimization is based on thermodynamic analysis with suitable practical assumptions which can be varied according to the need of user. Further the optimal cycle design points are presented for both RC and RRC configurations and comparison of net power output is established for waste heat recovery.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


Author(s):  
Ghulam Abbas Gohar ◽  
Muhammad Zia Ullah Khan ◽  
Hassan Raza ◽  
Arslan Ahmad ◽  
Yasir Raza ◽  
...  

The exhaust gases from an internal combustion (IC) engine carry away about 75% of the heat energy which means only 25% of heat energy is operated for power production. A recovery unit at the exhaust outlet port can ensure heat exchange between different temperature fluids through conjugate heat transfer phenomena. This study represents heat recovery from exhaust gases that are emitted from IC engines which can be utilized in various applications such as vapor absorption refrigeration systems. In the present work, a new type of perforated fin heat exchanger for waste heat recovery of exhaust gases is designed using SolidWorks, and the flow field design of the heat recovery system is optimized using ANSYS software. Various parameters (velocity, pressure, temperature, and heat conduction) of hot and cold fluid have been analyzed. Inlet velocity of cold fluids including refrigerant (LiBr solution), water, and graphene oxide (GO) nanofluid have been adopted at 0.03 m/s, 0.165 m/s, and 0.3 m/s, respectively. Inlet velocity of hot fluid is taken as 2 m/s, 4 m/s, and 6 m/s, respectively, to develop a test matrix. The results showed that maximum temperature reduction by the exhaust is achieved at 104.8°C using graphene oxide nanofluids with an inlet velocity of 0.3 m/s and exit velocity of 2 m/s in the heat recovery unit. Similarly, temperature reduction by exhaust gases is acquired at 102 °C using water and 96.34 °C by using a refrigerant (LiBr solution) with the same exit velocity (2 m/ s). Furthermore, maximum effectiveness of 0.489 is also obtained for GO nanofluid when compared with water and the refrigerant. On the other hand, the refrigerant has the maximum log mean temperature difference from all fluids with a value of 224.4 followed by water and GO.


Author(s):  
C. F. McDonald

Increased emphasis is being placed on the regenerative gas turbine cycle, and the utilization of waste heat recovery systems, for improved thermal efficiency. For such systems there are modes of engine operation, where it is possible for a metal fire to occur in the exhaust heat exchanger. This paper is intended as an introduction to the subject, more from an engineering, than metallurgical standpoint, and includes a description of a series of simple tests to acquire an understanding of the problem for a particular application. Some engine operational procedures, and design features, aimed at minimizing the costly and dangerous occurrence of gas turbine heat exchanger fires, are briefly mentioned.


Sign in / Sign up

Export Citation Format

Share Document