scholarly journals Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1879 ◽  
Author(s):  
Happy Aprillia ◽  
Hong-Tzer Yang ◽  
Chao-Ming Huang

The high utilization of renewable energy to manage climate change and provide green energy requires short-term photovoltaic (PV) power forecasting. In this paper, a novel forecasting strategy that combines a convolutional neural network (CNN) and a salp swarm algorithm (SSA) is proposed to forecast PV power output. First, the historical PV power data and associated weather information are classified into five weather types, such as rainy, heavy cloudy, cloudy, light cloudy and sunny. The CNN classification is then used to determine the prediction for the next day’s weather type. Five models of CNN regression are established to accommodate the prediction for different weather types. Each CNN regression is optimized using a salp swarm algorithm (SSA) to tune the best parameter. To evaluate the performance of the proposed method, comparisons were made to the SSA based support vector machine (SVM-SSA) and long short-term memory neural network (LSTM-SSA) methods. The proposed method was tested on a PV power generation system with a 500 kWp capacity located in south Taiwan. The results showed that the proposed CNN-SSA could accommodate the actual generation pattern better than the SVM-SSA and LSTM-SSA methods.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4733
Author(s):  
Andi A. H. Lateko ◽  
Hong-Tzer Yang ◽  
Chao-Ming Huang ◽  
Happy Aprillia ◽  
Che-Yuan Hsu ◽  
...  

Photovoltaic (PV) power forecasting urges in economic and secure operations of power systems. To avoid an inaccurate individual forecasting model, we propose an approach for a one-day to three-day ahead PV power hourly forecasting based on the stacking ensemble model with a recurrent neural network (RNN) as a meta-learner. The proposed approach is built by using real weather data and forecasted weather data in the training and testing stages, respectively. To accommodate uncertain weather, a daily clustering method based on statistical features, e.g., daily average, maximum, and standard deviation of PV power is applied in the data sets. Historical PV power output and weather data are used to train and test the model. The single learner considered in this research are artificial neural network, deep neural network, support vector regressions, long short-term memory, and convolutional neural network. Then, RNN is used to combine the forecasting results of each single learner. It is also important to observe the best combination of the single learners in this paper. Furthermore, to compare the performance of the proposed method, a random forest ensemble instead of RNN is used as a benchmark for comparison. Mean relative error (MRE) and mean absolute error (MAE) are used as criteria to validate the accuracy of different forecasting models. The MRE of the proposed RNN ensemble learner model is 4.29%, which has significant improvements by about 7–40%, 7–30%, and 8% compared to the single models, the combinations of fewer single learners, and the benchmark method, respectively. The results show that the proposed method is promising for use in real PV power forecasting systems.


2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Seyed Majid Azimi ◽  
Maximilian Kraus ◽  
Reza Bahmanyar ◽  
Peter Reinartz

In this paper, we address various challenges in multi-pedestrian and vehicle tracking in high-resolution aerial imagery by intensive evaluation of a number of traditional and Deep Learning based Single- and Multi-Object Tracking methods. We also describe our proposed Deep Learning based Multi-Object Tracking method AerialMPTNet that fuses appearance, temporal, and graphical information using a Siamese Neural Network, a Long Short-Term Memory, and a Graph Convolutional Neural Network module for more accurate and stable tracking. Moreover, we investigate the influence of the Squeeze-and-Excitation layers and Online Hard Example Mining on the performance of AerialMPTNet. To the best of our knowledge, we are the first to use these two for regression-based Multi-Object Tracking. Additionally, we studied and compared the L1 and Huber loss functions. In our experiments, we extensively evaluate AerialMPTNet on three aerial Multi-Object Tracking datasets, namely AerialMPT and KIT AIS pedestrian and vehicle datasets. Qualitative and quantitative results show that AerialMPTNet outperforms all previous methods for the pedestrian datasets and achieves competitive results for the vehicle dataset. In addition, Long Short-Term Memory and Graph Convolutional Neural Network modules enhance the tracking performance. Moreover, using Squeeze-and-Excitation and Online Hard Example Mining significantly helps for some cases while degrades the results for other cases. In addition, according to the results, L1 yields better results with respect to Huber loss for most of the scenarios. The presented results provide a deep insight into challenges and opportunities of the aerial Multi-Object Tracking domain, paving the way for future research.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7853
Author(s):  
Aleksej Logacjov ◽  
Kerstin Bach ◽  
Atle Kongsvold ◽  
Hilde Bremseth Bårdstu ◽  
Paul Jarle Mork

Existing accelerometer-based human activity recognition (HAR) benchmark datasets that were recorded during free living suffer from non-fixed sensor placement, the usage of only one sensor, and unreliable annotations. We make two contributions in this work. First, we present the publicly available Human Activity Recognition Trondheim dataset (HARTH). Twenty-two participants were recorded for 90 to 120 min during their regular working hours using two three-axial accelerometers, attached to the thigh and lower back, and a chest-mounted camera. Experts annotated the data independently using the camera’s video signal and achieved high inter-rater agreement (Fleiss’ Kappa =0.96). They labeled twelve activities. The second contribution of this paper is the training of seven different baseline machine learning models for HAR on our dataset. We used a support vector machine, k-nearest neighbor, random forest, extreme gradient boost, convolutional neural network, bidirectional long short-term memory, and convolutional neural network with multi-resolution blocks. The support vector machine achieved the best results with an F1-score of 0.81 (standard deviation: ±0.18), recall of 0.85±0.13, and precision of 0.79±0.22 in a leave-one-subject-out cross-validation. Our highly professional recordings and annotations provide a promising benchmark dataset for researchers to develop innovative machine learning approaches for precise HAR in free living.


2019 ◽  
Vol 1 (2) ◽  
pp. 74-84
Author(s):  
Evan Kusuma Susanto ◽  
Yosi Kristian

Asynchronous Advantage Actor-Critic (A3C) adalah sebuah algoritma deep reinforcement learning yang dikembangkan oleh Google DeepMind. Algoritma ini dapat digunakan untuk menciptakan sebuah arsitektur artificial intelligence yang dapat menguasai berbagai jenis game yang berbeda melalui trial and error dengan mempelajari tempilan layar game dan skor yang diperoleh dari hasil tindakannya tanpa campur tangan manusia. Sebuah network A3C terdiri dari Convolutional Neural Network (CNN) di bagian depan, Long Short-Term Memory Network (LSTM) di tengah, dan sebuah Actor-Critic network di bagian belakang. CNN berguna sebagai perangkum dari citra output layar dengan mengekstrak fitur-fitur yang penting yang terdapat pada layar. LSTM berguna sebagai pengingat keadaan game sebelumnya. Actor-Critic Network berguna untuk menentukan tindakan terbaik untuk dilakukan ketika dihadapkan dengan suatu kondisi tertentu. Dari hasil percobaan yang dilakukan, metode ini cukup efektif dan dapat mengalahkan pemain pemula dalam memainkan 5 game yang digunakan sebagai bahan uji coba.


Author(s):  
Ahmed Nasser ◽  
Huthaifa AL-Khazraji

<p>Predictive maintenance (PdM) is a successful strategy used to reduce cost by minimizing the breakdown stoppages and production loss. The massive amount of data that results from the integration between the physical and digital systems of the production process makes it possible for deep learning (DL) algorithms to be applied and utilized for fault prediction and diagnosis. This paper presents a hybrid convolutional neural network based and long short-term memory network (CNN-LSTM) approach to a predictive maintenance problem. The proposed CNN-LSTM approach enhances the predictive accuracy and also reduces the complexity of the model. To evaluate the proposed model, two comparisons with regular LSTM and gradient boosting decision tree (GBDT) methods using a freely available dataset have been made. The PdM model based on CNN-LSTM method demonstrates better prediction accuracy compared to the regular LSTM, where the average F-Score increases form 93.34% in the case of regular LSTM to 97.48% for the proposed CNN-LSTM. Compared to the related works the proposed hybrid CNN-LSTM PdM approach achieved better results in term of accuracy.</p>


Sign in / Sign up

Export Citation Format

Share Document