scholarly journals Fault Detection Methodology for Secondary Fluid Flow Rate in a Heat Pump Unit

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2974
Author(s):  
Samuel Boahen ◽  
Kwesi Mensah ◽  
Yujin Nam ◽  
Jong Min Choi

Fault detection and diagnosis (FDD) has become an important subject in heat pumps due to its potential for energy savings. However, research on multiple faults occurring at the secondary fluid side of heat pumps is rare in the open literature. This study experimentally examined single secondary fluid flow rate faults (SSFF) and multiple-simultaneous secondary fluid flow rate faults (MSSFF) and their effects on the performance of a heat pump unit, which is a core component of ground source heat pump systems, and proposed FDD methodology to detect these faults. The secondary fluid flow rate faults were simulated in cooling mode by varying the evaporator and condenser secondary fluid flow rates at 60%, 80%, 100%, 120%, and 140% of the reference value according to varying outdoor entering water temperature conditions. Condenser secondary fluid flow rate faults affected the heat pump coefficient of performance(COP) significantly more than the evaporator secondary fluid flow rate fault in SSFF. Cooling capacity was highly dependent on the evaporator secondary fluid flow rate fault while COP was greatly affected by the condenser secondary fluid flow rate fault in MSSFF. The FDD methodology was modeled using correlations and performance trends of the heat pump and can detect SSFF and MSSFF within an error threshold of ±1.6% and ±6.4% respectively.

Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3877
Author(s):  
Samuel Boahen ◽  
Kwesi Mensah ◽  
Selorm Kwaku Anka ◽  
Kwang Ho Lee ◽  
Jong Min Choi

The detection and diagnosis of faults is becoming necessary in ensuring energy savings in heat pump units. Faults can exist independently or simultaneously in heat pumps at the refrigerant side and secondary fluid flow loops. In this work, we discuss the effects that simultaneous refrigerant charge faults and faults associated with the flow rate of secondary fluids have on the performance of a heat pump operating in summer season and we developed a correlation to detect and diagnose these faults using multiple linear regression. The faults considered include simultaneous refrigerant charge and indoor heat exchanger secondary fluid flow rate faults (IFRFs), simultaneous refrigerant charge and outdoor heat exchanger secondary fluid flow rate faults (OFRFs) and simultaneous refrigerant charge, IFRF and OFRF. The occurrence of simultaneous refrigerant charge fault, IFRF and OFRF caused up to a 5.7% and 8% decrease in cooling capacity compared to simultaneous refrigerant charge and indoor heat exchanger secondary fluid flow rate faults, and simultaneous refrigerant charge and outdoor heat exchanger secondary fluid flow rate faults, respectively. Simultaneous refrigerant charge fault, IFRF and OFRF resulted in up to an 11.6% and 5.9% decrease in COP of the heat pump unit compared to simultaneous refrigerant charge fault and IFRF, and simultaneous refrigerant charge fault and OFRF, respectively. The developed FDD correlations accurately predicted the simultaneous refrigerant charge and faults in the flow rate of the secondary fluid within an error margin of 7.7%.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 545 ◽  
Author(s):  
Samuel Boahen ◽  
Kwang Lee ◽  
Jong Choi

Refrigerant charge faults have a great adverse effect on the performance of heat pumps and must therefore be detected and diagnosed early in real time. In this study, the effect of refrigerant charge faults on a water-to-water heat pump is experimentally investigated in cooling mode and heating mode at various outdoor entering water temperature conditions. The study showed that refrigerant undercharge affects the performance of water-to-water heat pump more in heating mode than in cooling mode. Results from the study are used to develop a refrigerant charge fault detection and diagnosis (FDD) algorithm that works using correlations and rule-based refrigerant fault characteristic charts. The FDD algorithm is able to detect refrigerant charge faults in the water-to-water heat pump within an error threshold of ±4.5% and ±1.1% in cooling mode and heating mode respectively.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

2011 ◽  
Vol 121-126 ◽  
pp. 2162-2166
Author(s):  
Yan Mei Meng ◽  
Hai Feng Pang ◽  
Ying Ning Hu ◽  
Quan Zhou ◽  
Dao Yang Li ◽  
...  

This paper describes the research and implementation of ground source heat pump unit remote real-time monitoring system, researches in remote real-time monitoring system's overall design, hardware design, software design and implementation of OPC communication. The host computer takes advantage of the human-computer interaction interface of configuration software to achieve the remote real-time monitoring for ground source heat pump unit's running state; the lower computer uses data collector to intensively collect the data which is measured by field measuring instruments, and to achieve remote data transmission based on Ethernet, and then to carry out the communication between the host computer and the lower computer via OPC technology. The results show that the system achieves remote real-time monitoring of ground source heat pump unit, and is stable, easy to operate and provides a reliable basis for the actual energy saving effect's evaluation of ground source heat pump system.


1956 ◽  
Vol 23 (2) ◽  
pp. 269-272
Author(s):  
L. F. Welanetz

Abstract An analysis is made of the suction holding power of a device in which a fluid flows radially outward from a central hole between two parallel circular plates. The holding power and the fluid flow rate are determined as functions of the plate separation. The effect of changing the proportions of the device is investigated. Experiments were made to check the analysis.


2017 ◽  
Vol 204 ◽  
pp. 679-689 ◽  
Author(s):  
Mengjie Song ◽  
Xiangguo Xu ◽  
Ning Mao ◽  
Shiming Deng ◽  
Yingjie Xu

2012 ◽  
Vol 608-609 ◽  
pp. 1241-1245
Author(s):  
Wei Qiu ◽  
Li Zhang ◽  
Qing Rong liu

This paper analyses the energy consumption of water source heat pump, shows that the performance coefficient of water source heat pump unit is directly related to the temperature of water resources, and discusses the feasibility of central heating by recovering condensing heat of power plant using water source heat pump unit. It analyzes the energy saving benefit of water source heat pump unit is significant compared with traditional heating. Using the technology recovers waste heat of power plant, which can not only decrease the energy waste on the direct discharge of waste heat and water, but at the same time, it is a new air conditioning system without environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document