scholarly journals Review on Multi-Objective Control Strategies for Distributed Generation on Inverter-Based Microgrids

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3483 ◽  
Author(s):  
Óscar Gonzales-Zurita ◽  
Jean-Michel Clairand ◽  
Elisa Peñalvo-López ◽  
Guillermo Escrivá-Escrivá

Microgrids have emerged as a solution to address new challenges in power systems with the integration of distributed energy resources (DER). Inverter-based microgrids (IBMG) need to implement proper control systems to avoid stability and reliability issues. Thus, several researchers have introduced multi-objective control strategies for distributed generation on IBMG. This paper presents a review of the different approaches that have been proposed by several authors of multi-objective control. This work describes the main features of the inverter as a key component of microgrids. Details related to accomplishing efficient generation from a control systems’ view have been observed. This study addresses the potential of multi-objective control to overcome conflicting objectives with balanced results. Finally, this paper shows future trends in control objectives and discussion of the different multi-objective approaches.

Author(s):  
Kostiantyn Kartalapov

The articles analyze the problems of building electric power systems of the future on the basis of Smart Grid concepts and taking into account the introduction of electrical installations of distributed energy resources. The problems of introduction of certain technologies into the Unified Energy System of Ukraine are considered and the ways of their solution are offered.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3067
Author(s):  
Megan Culler ◽  
Hannah Burroughs

The share of renewable and distributed energy resources (DERs), like wind turbines, solar photovoltaics and grid-connected batteries, interconnected to the electric grid is rapidly increasing due to reduced costs, rising efficiency, and regulatory requirements aimed at incentivizing a lower-carbon electricity system. These distributed energy resources differ from traditional generation in many ways including the use of many smaller devices connected primarily (but not exclusively) to the distribution network, rather than few larger devices connected to the transmission network. DERs being installed today often include modern communication hardware like cellular modems and WiFi connectivity and, in addition, the inverters used to connect these resources to the grid are gaining increasingly complex capabilities, like providing voltage and frequency support or supporting microgrids. To perform these new functions safely, communications to the device and more complex controls are required. The distributed nature of DER devices combined with their network connectivity and complex controls interfaces present a larger potential attack surface for adversaries looking to create instability in power systems. To address this area of concern, the steps of a cyberattack on DERs have been studied, including the security of industrial protocols, the misuse of the DER interface, and the physical impacts. These different steps have not previously been tied together in practice and not specifically studied for grid-connected storage devices. In this work, we focus on grid-connected batteries. We explore the potential impacts of a cyberattack on a battery to power system stability, to the battery hardware, and on economics for various stakeholders. We then use real hardware to demonstrate end-to-end attack paths exist when security features are disabled or misconfigured. Our experimental focus is on control interface security and protocol security, with the initial assumption that an adversary has gained access to the network to which the device is connected. We provide real examples of the effectiveness of certain defenses. This work can be used to help utilities and other grid-connected battery owners and operators evaluate the severity of different threats and the effectiveness of defense strategies so they can effectively deploy and protect grid-connected storage devices.


Author(s):  
Abdul Rasheed ◽  
G. Keshava Rao

<p>Generally, the power systems are mainly effected by the continuous changes in operational requirement and increasing amount of distributed energy systems. This paper proposes a new concept of power-control strategies for a micro grid generation system for better transfer of power. The micro grids are obtained with the general renewable energy sources and this concept provides the maximum utilization of power at environmental free conditions with low losses; then the system efficiency is also improved. This paper proposes a single stage converter based micro grid to reduce the number of converters in an individual ac or dc grid. The proposed micro grid concept can work in both stand-alone mode and also in grid interfaced mode. The distortions that occur in power system due to changes in load or because of usage of non-linear loads, can be eliminated by using control strategies designed for shunt active hybrid filters such as series and shunt converters. A conventional Proportional Integral (PI) and Fuzzy Logic Controllers are used for power quality enhancement by reducing the distortions in the output power. The simulation results are compared among the two control strategies, that fuzzy logic controller and pi controller.</p>


2018 ◽  
Vol 8 (8) ◽  
pp. 1283 ◽  
Author(s):  
Pedro Faria ◽  
João Spínola ◽  
Zita Vale

Distributed energy resource integration in power systems has advantages and challenges in both the economic and the technical operation of the system. An aggregator, as in the case of a Virtual Power Player, is essential in order to support the operation of these small size resources. Innovative approaches capable of supporting the decisions made in terms of resource scheduling, aggregation and remuneration are needed. The present paper addresses a methodology capable of managing resources through the activities of an aggregator, providing different choices of aggregation and remuneration strategies. The methodology is validated in a case study regarding a 21-bus network, composed of 20 consumers and 26 producers.


Sign in / Sign up

Export Citation Format

Share Document