scholarly journals A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3537
Author(s):  
Jian Teng ◽  
Corey D. Markfort

Wind energy is one of the fastest growing renewable energy sources in the U.S. Wind turbine wakes change the flow field within wind farms and reduce power generation. Prior research has used experimental and computational methods to investigate and model wind farm wake effects. However, these methods are costly and time-consuming to use commercially. In contrast, a simple analytical approach can provide reasonably accurate estimates of wake effects on flow and power. To reducing errors in wake modeling, one must calibrate the model based on a specific wind farm setting. The purpose of this research is to develop a calibration procedure for wind farm wake modeling using a simple analytical approach and wind turbine operational data obtained from the Supervisory Control And Data Acquisition (SCADA) system. The proposed procedure uses a Gaussian-based analytical wake model and wake superposition model. The wake growth rate varies across the wind farm based on the local streamwise turbulence intensity. The wake model was calibrated by implementing the proposed procedure with turbine pairs within the wind farm. The performance of the model was validated at an onshore wind farm in Iowa, USA. The results were compared with the industry standard wind farm wake model and shown to result in an approximate 1% improvement in sitewide total power prediction. This new SCADA-based calibration procedure is useful for real-time wind farm operational optimization.

Author(s):  
Xiaomin Chen ◽  
Ramesh Agarwal

In this paper, we consider the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal–Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally place the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed.


2017 ◽  
Vol 41 (5) ◽  
pp. 313-329 ◽  
Author(s):  
Jared J Thomas ◽  
Pieter MO Gebraad ◽  
Andrew Ning

The FLORIS (FLOw Redirection and Induction in Steady-state) model, a parametric wind turbine wake model that predicts steady-state wake characteristics based on wind turbine position and yaw angle, was developed for optimization of control settings and turbine locations. This article provides details on changes made to the FLORIS model to make the model more suitable for gradient-based optimization. Changes to the FLORIS model were made to remove discontinuities and add curvature to regions of non-physical zero gradient. Exact gradients for the FLORIS model were obtained using algorithmic differentiation. A set of three case studies demonstrate that using exact gradients with gradient-based optimization reduces the number of function calls by several orders of magnitude. The case studies also show that adding curvature improves convergence behavior, allowing gradient-based optimization algorithms used with the FLORIS model to more reliably find better solutions to wind farm optimization problems.


2020 ◽  
Vol 12 (14) ◽  
pp. 5761 ◽  
Author(s):  
Chakib El Mokhi ◽  
Adnane Addaim

Wind energy is currently one of the fastest-growing renewable energy sources in the world. For this reason, research on methods to render wind farms more energy efficient is reasonable. The optimization of wind turbine positions within wind farms makes the exploitation of wind energy more efficient and the wind farms more competitive with other energy resources. The investment costs alone for substation and electrical infrastructure for offshore wind farms run around 15–30% of the total investment costs of the project, which are considered high. Optimizing the substation location can reduce these costs, which also minimizes the overall cable length within the wind farm. In parallel, optimizing the cable routing can provide an additional benefit by finding the optimal grid network routing. In this article, the authors show the procedure on how to create an optimized wind farm already in the design phase using metaheuristic algorithms. Besides the optimization of wind turbine positions for more energy efficiency, the optimization methods of the substation location and the cable routing for the collector system to avoid cable losses are also presented.


2019 ◽  
Vol 122 ◽  
pp. 04005
Author(s):  
Ilayda Ulku ◽  
Cigdem Alabas-Uslu

A wind farm, mainly, is composed of a set of turbines, one or more transmitters and a set of electrical cable connections between turbines and transmitters. Determination of turbine locations within the farm to maximize total power generation is called turbine location (TL) problem. Relative turbine positions affect the amount of overall energy because of wake effects. Determination of cable connections among turbines and transmitters to collect produced energy by turbines at transmitters is called cable layout (CL) problem. While TL problem is directly effective on the total energy production in the farm, CL problem indirectly affects the total energy due to the power losses. In the literature, TL and CL problems are solved sequentially where the layout found by solving of TL is used as an input of CL problem. To minimize wake effects in TL problem, distances between turbine pairs should be increased, however, as the distances are increased the cable cost increases in CL problem. A new mathematical model is developed to deal with simultaneously solving of TL and CL problems. A set of test instances are used to show the performance of the proposed model. The experiments show the practical use of the proposed holistic model.


2018 ◽  
Vol 64 ◽  
pp. 06010
Author(s):  
Bachhal Amrender Singh ◽  
Vogstad Klaus ◽  
Lal Kolhe Mohan ◽  
Chougule Abhijit ◽  
Beyer Hans George

There is a big wind energy potential in supplying the power in an island and most of the islands are off-grid. Due to the limited area in island(s), there is need to find appropriate layout / location for wind turbines suited to the local wind conditions. In this paper, we have considered the wind resources data of an island in Trøndelag region of the Northern Norway, situated on the coastal line. The wind resources data of this island have been analysed for wake losses and turbulence on wind turbines for determining appropriate locations of wind turbines in this island. These analyses are very important for understanding the fatigue and mechanical stress on the wind turbines. In this work, semi empirical wake model has been used for wake losses analysis with wind speed and turbine spacings. The Jensen wake model used for the wake loss analysis due to its high degree of accuracy and the Frandsen model for characterizing the turbulent loading. The variations of the losses in the wind energy production of the down-wind turbine relative to the up-wind turbine and, the down-stream turbulence have been analysed for various turbine distances. The special emphasis has been taken for the case of wind turbine spacing, leading to the turbulence conditions for satisfying the IEC 61400-1 conditions to find the wind turbine layout in this island. The energy production of down-wind turbines has been decreased from 2 to 20% due to the lower wind speeds as they are located behind up-wind turbine, resulting in decreasing the overall energy production of the wind farm. Also, the higher wake losses have contributed to the effective turbulence, which has reduced the overall energy production from the wind farm. In this case study, the required distance for wind turbines have been changed to 6 rotor diameters for increasing the energy gain. From the results, it has been estimated that the marginal change in wake losses by moving the down-stream wind turbine by one rotor diameter distance has been in the range of 0.5 to 1% only and it is insignificant. In the full-length paper, the wake effects with wind speed variations and the wind turbine locations will be reported for reducing the wake losses on the down-stream wind turbine. The Frandsen model has been used for analysing turbulence loading on the down-stream wind turbine as per IEC 61400-1 criteria. In larger wind farms, the high turbulence from the up-stream wind turbines increases the fatigues on the turbines of the wind farm. In this work, we have used the effective turbulence criteria at a certain distance between up-stream and down-stream turbines for minimizing the fatigue load level. The sensitivity analysis on wake and turbulence analysis will be reported in the full-length paper. Results from this work will be useful for finding wind farm layouts in an island for utilizing effectively the wind energy resources and electrification using wind power plants.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 153 ◽  
Author(s):  
Omar M. A. M. Ibrahim ◽  
Shigeo Yoshida ◽  
Masahiro Hamasaki ◽  
Ao Takada

Complex terrain can influence wind turbine wakes and wind speed profiles in a wind farm. Consequently, predicting the performance of wind turbines and energy production over complex terrain is more difficult than it is over flat terrain. In this preliminary study, an engineering wake model, that considers acceleration on a two-dimensional hill, was developed based on the momentum theory. The model consists of the wake width and wake wind speed. The equation to calculate the rotor thrust, which is calculated by the wake wind speed profiles, was also formulated. Then, a wind-tunnel test was performed in simple flow conditions in order to investigate wake development over a two-dimensional hill. After this the wake model was compared with the wind-tunnel test, and the results obtained by using the new wake model were close to the wind-tunnel test results. Using the new wake model, it was possible to estimate the wake shrinkage in an accelerating two-dimensional wind field.


2001 ◽  
Vol 123 (4) ◽  
pp. 290-295 ◽  
Author(s):  
Ken Chaney ◽  
Alfred J. Eggers, ◽  
Patrick J. Moriarty ◽  
William E. Holley

Accurate prediction of both the center of thrust location and the magnitude of the thrust on a rotor disk are critical to satisfactory modeling of the yawing of small wind turbines to large angles to passively control overshoots in power and loads at higher wind speeds. Of the two, the prediction of the center of thrust location upwind of the center of a yawed rotor disk appears to be the most uncertain and potentially in serious error. This error is due to uncertainties in skewed wake effects on the thrust distribution on the disk. Three skewed wake models are examined to better understand the potential sources of error. First is the dynamic inflow model originally developed for helicopters, and second is a modification of this model developed for wind turbines. Third is an earlier cylindrical vortex wake model which pioneered the study of skewed wake effects for helicopters, and which can be generalized for wind turbine applications. It is concluded that this generalized model and the original dynamic inflow model are the most promising for small wind turbine applications, and their predictions of center of thrust and blade root moments are compared for an idealized rotor. The focus is on static equilibrium loads, and note is taken of the potential importance of accounting for expanding wake effects. The basic results of the study are applicable to large as well as small wind turbine rotors.


2016 ◽  
Author(s):  
Amy Stidworthy ◽  
David Carruthers

Abstract. A new model, FLOWSTAR-Energy, has been developed for the practical calculation of wind farm energy production. It includes a semi-analytic model for airflow over complex surfaces (FLOWSTAR) and a wind turbine wake model that simulates wake-wake interaction by exploiting some similarities between the decay of a wind turbine wake and the dispersion of plume of passive gas emitted from an elevated source. Additional turbulence due to the wind shear at the wake edge is included and the assumption is made that wind turbines are only affected by wakes from upstream wind turbines. The model takes account of the structure of the atmospheric boundary layer, which means that the effect of atmospheric stability is included. A marine boundary layer scheme is also included to enable offshore as well as onshore sites to be modelled. FLOWSTAR-Energy has been used to model three different wind farms and the predicted energy output compared with measured data. Maps of wind speed and turbulence have also been calculated for two of the wind farms. The Tjaæreborg wind farm is an onshore site consisting of a single 2 MW wind turbine, the NoordZee offshore wind farm consists of 36 V90 VESTAS 3 MW turbines and the Nysted offshore wind farm consists of 72 Bonus 2.3 MW turbines. The NoordZee and Nysted measurement datasets include stability distribution data, which was included in the modelling. Of the two offshore wind farm datasets, the Noordzee dataset focuses on a single 5-degree wind direction sector and therefore only represents a limited number of measurements (1,284); whereas the Nysted dataset captures data for seven 5-degree wind direction sectors and represents a larger number of measurements (84,363). The best agreement between modelled and measured data was obtained with the Nysted dataset, with high correlation (0.98 or above) and low normalised mean square error (0.007 or below) for all three flow cases. The results from Tjæreborg show that the model replicates the Gaussian shape of the wake deficit two turbine diameters downstream of the turbine, but the lack of stability information in this dataset makes it difficult to draw conclusions about model performance. One of the key strengths of FLOWSTAR-Energy is its ability to model the effects of complex terrain on the airflow. However, although the airflow model has been previously compared extensively with flow data, it has so far not been used in detail to predict energy yields from wind farms in complex terrain. This will be the subject of a further validation study for FLOWSTAR-Energy.


2020 ◽  
Vol 59 (1) ◽  
pp. 153-174 ◽  
Author(s):  
Sara C. Pryor ◽  
Tristan J. Shepherd ◽  
Patrick J. H. Volker ◽  
Andrea N. Hahmann ◽  
Rebecca J. Barthelmie

AbstractHigh-resolution simulations are conducted with the Weather Research and Forecasting Model to evaluate the sensitivity of wake effects and power production from two wind farm parameterizations [the commonly used Fitch scheme and the more recently developed Explicit Wake Parameterization (EWP)] to the resolution at which the model is applied. The simulations are conducted for a 9-month period for a domain encompassing much of the U.S. Midwest. The two horizontal resolutions considered are 4 km × 4 km and 2 km × 2 km grid cells, and the two vertical discretizations employ either 41 or 57 vertical layers (with the latter having double the number in the lowest 1 km). Higher wind speeds are observed close to the wind turbine hub height when a larger number of vertical layers are employed (12 in the lowest 200 m vs 6), which contributes to higher power production from both wind farm schemes. Differences in gross capacity factors for wind turbine power production from the two wind farm parameterizations and with resolution are most strongly manifest under stable conditions (i.e., at night). The spatial extent of wind farm wakes when defined as the area affected by velocity deficits near to wind turbine hub heights in excess of 2% of the simulation without wind turbines is considerably larger in simulations with the Fitch scheme. This spatial extent is generally reduced by increasing the horizontal resolution and/or increasing the number of vertical levels. These results have important applications to projections of expected annual energy production from new wind turbine arrays constructed in the wind shadow from existing wind farms.


2016 ◽  
Vol 41 (1) ◽  
pp. 62-73 ◽  
Author(s):  
Yujia Hao ◽  
Matthew A Lackner

Wind turbines located in a wind farm are subject to a wind field that is substantially modified when compared to the ambient wind field due to wake effects. It is clear that in addition to the power, a tool that could model the loads of the waked turbine is needed. In this work, a wind farm wake model is created using a single wake model based on the dynamic wake meandering model to systematically model the wake effects and thus the power and loads of an entire wind farm with an arbitrary wind turbine layout and wind condition. This wind farm wake model is incorporated into the National Wind Technology Center design codes. Preliminary results demonstrate that this wind farm tool yields satisfactory results when compared with Simulator for Wind Farm Applications, a high fidelity computational fluid dynamics Large eddy simulation model, and with experimentally-obtained field data. The integration of the wind farm model with the National Wind Technology Center design codes is described in detail and validation results of the tool are provided.


Sign in / Sign up

Export Citation Format

Share Document