scholarly journals Effects of Inflow Shear on Wake Characteristics of Wind-Turbines over Flat Terrain

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3745 ◽  
Author(s):  
Takanori Uchida

The scope of the present study was to understand the wake characteristics of wind-turbines under various inflow shears. First, in order to verify the prediction accuracy of the in-house large-eddy simulation (LES) solver, called RIAM-COMPACT, based on a Cartesian staggered grid, we conducted a wind-tunnel experiment using a wind-turbine scale model and compared the numerical and experimental results. The total number of grid points in the computational domain was about 235 million. Parallel computation based on a hybrid LES/actuator line (AL) model approach was performed with a new SX-Aurora TSUBASA vector supercomputer. The comparison between wind-tunnel experiment and high-resolution LES results showed that the AL model implemented in the in-house LES solver in this study could accurately reproduce both performances of the wind-turbine scale model and flow characteristics in the wake region. Next, with the LES solver developed in-house, flow past the entire wind-turbine, including the nacelle and the tower, was simulated for a tip-speed ratio (TSR) of 4, the optimal TSR. Three types of inflow shear, N = 4, N = 10, and uniform flow, were set at the inflow boundary. In these calculations, the calculation domain in the streamwise direction was very long, 30.0 D (D being the wind-turbine rotor diameter) from the center of the wind-turbine hub. Long-term integration of t = 0 to 400 R/Uin was performed. Various turbulence statistics were calculated at t = 200 to 400 R/Uin. Here, R is the wind-turbine rotor radius, and Uin is the wind speed at the hub-center height. On the basis of the obtained results, we numerically investigated the effects of inflow shear on the wake characteristics of wind-turbines over a flat terrain. Focusing on the center of the wind-turbine hub, all results showed almost the same behavior regardless of the difference in the three types of inflow shear.

Author(s):  
Youjin Kim ◽  
Ali Al-Abadi ◽  
Antonio Delgado

This study introduces strategic methods for improving the aerodynamic performance of wind turbines. It was completed by combining different optimization methods for each part of the wind turbine rotor. The chord length and pitch angle are optimized by a torque-matched method (TMASO), whereas the airfoil shape is optimized by the genetic algorithm (GA). The TMASO is implemented to produce an improved design of a reference turbine (NREL UAE Phase V). The GA is operated to generate a novel airfoil design that is evaluated by automatic interfacing for the highest gliding ratio (GR). The adopted method produces an optimized wind turbine with an 11% increase of power coefficient (Cp) with 30% less of the corresponding tip speed ratio (TSR). Furthermore, the optimized wind turbine shows reduced tip loss effect.


Author(s):  
Michael McWillam ◽  
David Johnson

The engineering of wind turbines is not fully mature. There are still phenomena, particularly dynamic stall that cannot be accurately modeled. Dynamic stall contributes to fatigue stress and premature failure in many turbine components. The three dimensionality of dynamic stall make these structures unique for wind turbines. Currently flow visualization of dynamic stall on a wind turbine rotor has not been achieved, but these visualizations can reveal a great deal about the structures that contribute to dynamic stall. Particle Image Velocimetry (PIV) is a powerful experimental technique that can take non-intrusive flow measurements of planar flow simultaneously. High-speed cameras enable time resolved PIV can reveal the transient development. This technique is suited to gain a better understanding of dynamic stall. A custom 3.27 m diameter wind turbine has been built to allow such measurements on the blade. The camera is mounted on the hub and will take measurements within the rotating domain. Mirrors are used so that laser illumination rotates with the blade. The wind turbine will operate in controlled conditions provided by a large wind tunnel. High-speed pressure data acquisition will be used in conjunction with PIV to get an understanding of the forces associated with the flow structures. Many experiments will be made possible by this apparatus. First the flow structures responsible for the forces can be identified. Quantitative measurements of the flow field will identify the development of the stall vortex. The quantified flow structures can be used to verify and improve models. The spatial resolution of PIV can map the three dimensional structure in great detail. The experimental apparatus is independent of the blade geometry; as such multiple blades can be used to identify the effect of blade geometry. Finally flow control research in the field of aviation can be applied to control dynamic stall. These experiments will be subject of much of the future work at the University of Waterloo. Potentially this work will unlock the secrets of dynamic stall and improve the integrity of wind turbines.


Author(s):  
Paul Schünemann ◽  
Timo Zwisele ◽  
Frank Adam ◽  
Uwe Ritschel

Floating wind turbine systems will play an important role for a sustainable energy supply in the future. The dynamic behavior of such systems is governed by strong couplings of aerodynamic, structural mechanic and hydrodynamic effects. To examine these effects scaled tank tests are an inevitable part of the design process of floating wind turbine systems. Normally Froude scaling is used in tank tests. However, using Froude scaling also for the wind turbine rotor will lead to wrong aerodynamic loads compared to the full-scale turbine. Therefore the paper provides a detailed description of designing a modified scaled rotor blade mitigating this problem. Thereby a focus is set on preserving the tip speed ratio of the full scale turbine, keeping the thrust force behavior of the full scale rotor also in model scale and additionally maintaining the power coefficient between full scale and model scale. This is achieved by completely redesigning the original blade using a different airfoil. All steps of this redesign process are explained using the example of the generic DOWEC 6MW wind turbine. Calculations of aerodynamic coefficients are done with the software tools XFoil and AirfoilPrep and the resulting thrust and power coefficients are obtained by running several simulations with the software AeroDyn.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6167
Author(s):  
Fang Feng ◽  
Guoqiang Tong ◽  
Yunfei Ma ◽  
Yan Li

In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce greenhouse gas emissions. With the advantages of simple structure, unnecessary facing the wind direction, and unique appearance, the vertical axis wind turbine (VAWT) attracts extensive attention in the field of small and medium wind turbines. The lift-type VAWT exhibits outstanding aerodynamic characteristics at a high tip speed ratio, while the starting characteristics are generally undesirable at a low wind speed; thus, how to improve the starting characteristics of the lift-type VAWT has always been an important issue. In this paper, a lift-drag combined starter (LDCS) suitable for lift-type VAWT was proposed to optimize the starting characteristics of lift-type VAWT. With semi-elliptical drag blades and lift blades equipped on the middle and rear part outside the starter, the structure is characterized by lift-drag combination, weakening the adverse effect of the starter with semi-elliptical drag blades alone on the output performance of the original lift-type VAWT and improving the characteristics of the lift-drag combined VAWT. The static characteristic is one of the important starting characteristics of the wind turbine. The rapid development of computational fluid dynamics has laid a solid material foundation for VAWT. Thus the static characteristics of the LDCS with different numbers of blades were investigated by conducting numerical simulation and wind tunnel tests. The results demonstrated that the static torque coefficient of LDCS increased significantly with the increased incoming wind speed. The average value of the static torque coefficient also increased significantly. This study can provide guidelines for the research of lift-drag combined wind turbines.


2012 ◽  
Vol 229-231 ◽  
pp. 2323-2326
Author(s):  
Zong Qi Tan ◽  
Can Can Li ◽  
Hui Jun Ye ◽  
Yu Qiong Zhou ◽  
Hua Ling Zhu

This paper designed the controller of the wind turbine rotor rotating speed. This model of adaptive-PID through control the tip-speed ratio and count the values of PID for variable wind speed. From the result of simulation, the wind speed can run in a good dynamic characteristic, and keep the rotor running in the best tip-speed ratio at the same time.


Author(s):  
Sayem Zafar ◽  
Mohamed Gadalla

A small horizontal axis wind turbine rotor was designed and tested with aerodynamically efficient, economical and easy to manufacture blades. Basic blade aerodynamic analysis was conducted using commercially available software. The blade span was constrained such that the complete wind turbine can be rooftop mountable with the envisioned wind turbine height of around 8 m. The blade was designed without any taper or twist to comply with the low cost and ease of manufacturing requirements. The aerodynamic analysis suggested laminar flow airfoils to be the most efficient airfoils for such use. Using NACA 63-418 airfoil, a rectangular blade geometry was selected with chord length of 0.27[m] and span of 1.52[m]. Glass reinforced plastic was used as the blade material for low cost and favorable strength to weight ratio with a skin thickness of 1[mm]. Because of the resultant velocity changes with respect to the blade span, while the blade is rotating, an optimal installed angle of attack was to be determined. The installed angle of attack was required to produce the highest possible rotation under usual wind speeds while start at relatively low speed. Tests were conducted at multiple wind speeds with blades mounted on free rotating shaft. The turbine was tested for three different installed angles and rotational speeds were recorded. The result showed increase in rotational speed with the increase in blade angle away from the free-stream velocity direction while the start-up speeds were found to be within close range of each other. At the optimal angle was found to be 22° from the plane of rotation. The results seem very promising for a low cost small wind turbine with no twist and taper in the blade. The tests established that non-twisted wind turbine blades, when used for rooftop small wind turbines, can generate useable electrical power for domestic consumption. It also established that, for small wind turbines, non-twisted, non-tapered blades provide an economical yet productive alternative to the existing complex wind turbine blades.


2015 ◽  
Vol 79 ◽  
pp. 227-235 ◽  
Author(s):  
Jaeha Ryi ◽  
Wook Rhee ◽  
Ui Chang Hwang ◽  
Jong-Soo Choi

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3877 ◽  
Author(s):  
Hyun-Goo Kim ◽  
Wan-Ho Jeon

For the purposes of this study, a wind tunnel experiment and a numerical analysis during ebb and high tides were conducted to determine the positive and negative effects of wind flow influenced by a seawall structure on the performance of wind turbines installed along a coastal seawall. The comparison of the wind flow field between a wind tunnel experiment performed with a 1/100 scale model and a computational fluid dynamics (CFD) analysis confirmed that the MP k-turbulence model estimated flow separation on the leeside of the seawall the most accurately. The CFD analysis verified that wind speed-up occurred due to the virtual hill effect caused by the seawall’s windward slope and the recirculation zone of its rear face, which created a positive effect by mitigating wind shear while increasing the mean wind speed in the wind turbine’s rotor plane. In contrast, the turbulence effect of flow separation on the seawall’s leeside was limited to the area below the wind turbine rotor, and had no negative effect. The use of the CFD verified with the comparison with the wind tunnel experiment was extended to the full-scale seawall, and the results of the analysis based on the wind turbine Supervisory Control and Data Acquisition (SCADA) data of a wind farm confirmed that the seawall effect was equivalent to a 1.5% increase in power generation as a result of a mitigation of the wind profile.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Masami Suzuki

In designing a wind turbine, the validation of the mathematical model’s result is normally carried out by comparison with wind tunnel experiment data. However, the Reynolds number of the wind tunnel experiment is low, and the flow does not match fully developed turbulence on the leading edge of a wind turbine blade. Therefore, the transition area from laminar to turbulent flow becomes wide under these conditions, and the separation point is difficult to predict using turbulence models. The prediction precision decreases dramatically when working with tip speed ratios less than the maximum power point. This study carries out a steadiness calculation with turbulence model and an unsteadiness calculation with laminar model for a three-blade horizontal axis wind turbine. The validation of the calculations is performed by comparing with experimental results. The power coefficients calculated without turbulence models are in agreement with the experimental data for a tip speed ratio greater than 5.


Sign in / Sign up

Export Citation Format

Share Document