scholarly journals Transient Pressure Analysis of a Multiple Fractured Well in a Stress-Sensitive Coal Seam Gas Reservoir

Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3849 ◽  
Author(s):  
Zuhao Kou ◽  
Haitao Wang

This paper investigates the bottom-hole pressure (BHP) performance of a fractured well with multiple radial fracture wings in a coalbed methane (CBM) reservoir with consideration of stress sensitivity. The fluid flow in the matrix simultaneously considers adsorption–desorption and diffusion, whereas fluid flow in the natural fracture system and the induced fracture network obeys Darcy’s law. The continuous line-source function in the CBM reservoir associated with the discretization method is employed in the Laplace domain. With the aid of Stehfest numerical inversion technology and Gauss elimination, the transient BHP responses are determined and analyzed. It is found that the main flow regimes for the proposed model in the CBM reservoir are as follows: linear flow between adjacent radial fracture wings, pseudo-radial flow in the inner region or Stimulated Reservoir Volume (SRV), and radial flow in outer region (un-stimulated region). The effects of permeability modulus, radius of SRV, ratio of permeability in SRV to that in un-stimulated region, properties of radial fracture wings, storativity ratio of the un-stimulated region, inter-porosity flow parameter, and adsorption–desorption constant on the transient BHP responses are discussed. The results obtained in this study will be of great significance for the quantitative analyzing of the transient performances of the wells with multiple radial fractures in CBM reservoirs.

2010 ◽  
Vol 24 (13) ◽  
pp. 1291-1294 ◽  
Author(s):  
ZHIJIE WEI ◽  
DONGXIAO ZHANG

In this paper, we present a coupled fluid flow and geomechanics model for simulating coalbed methane recovery. In the model, the fluid flow process is simulated with a triple porosity/dual permeability representation, and the coupling effects of effective stress and matrix swelling/shrinkage approach are simulated with a coupled fluid flow, geomechanics and gas adsorption/desorption model. The mathematical model is implemented with a fully implicit finite volume method and simulation is conducted to evaluate the effect of coupled fluid flow, geomechanics, and gas adsorption/desorption.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Mingqiang Wei ◽  
Ming Wen ◽  
Yonggang Duan ◽  
Quantang Fang ◽  
Keyi Ren

AbstractProduction decline type curves analysis is one of the robust methods used to analyze transport flow behaviors and to evaluate reservoir properties, original gas in place, etc. Although advanced production decline analysis methods for several well types in conventional reservoirs are widely used, there are few models of production decline type curves for a fractured well in coalbed methane (CBM) reservoirs. In this work, a novel pseudo state diffusion and convection model is firstly developed to describe CBM transport in matrix systems. Subsequently, based on the Langmuir adsorption isotherm, pseudo state diffusion and convection in matrix systems and Darcy flow in cleat systems, the production model of a CBM well with a finite conductivity fracture is derived and solved by Laplace transform. Advanced production decline type curves of a fractured well in CBM reservoirs are plotted through the Stehfest numerical inversion algorithm and computer programming. Six flow regimes, including linear flow regime, early radial flow in cleat systems, interporosity flow regime, late pseudo radial flow regime, transient regime and boundary dominated flow regime, are recognized. Finally, the effect of relevant parameters, including the storage coefficient of gas in cleat systems, the transfer coefficient from a matrix system to the cleat system, the modified coefficient of permeability, dimensionless fracture conductivity and dimensionless reservoir drainage radius, are analyzed on type curves. This paper does not only enrich the production decline type curves model of CBM reservoirs, but also expands our understanding of fractured well transport behaviors in CBM reservoirs and guides to analyze the well's production performance.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1342-1363 ◽  
Author(s):  
Liwu Jiang ◽  
Tongjing Liu ◽  
Daoyong Yang

Summary In this study, theoretical models have been formulated, validated, and applied to evaluate the transient pressure behavior of a horizontal well with multiple fractures in a tight formation by taking stress-sensitive fracture conductivity into account. On the basis of the superposition principle in the Laplace domain, we propose a coupled matrix/fracture-flow model with consideration of the stress-sensitivity effect in fractures, which strengthens the nonlinearity of the governing equations. More specifically, a new slab-source function in the Laplace domain was developed to describe the transient pressure responses caused by fluid flow from the matrix to the fracture, and a new solution was derived to describe the fluid flow in the fracture under the stress-sensitivity effect. Subsequently, a semianalytical method was applied by discretizing each hydraulic fracture into small segments, and a linearization scheme and an iteration method are adopted to deal with the nonlinear problem in the Laplace domain. Meanwhile, a modified superposition principle was proposed and applied to generate the pressure distributions for buildup tests with consideration of stress-sensitive fracture conductivity. Furthermore, pressure responses and their corresponding derivative type curves were generated to examine the effect of stress-sensitive conductivity. For pressure-drawdown tests, it is found that gradual increases in both pressure drop and pressure derivative occur over time because of the partial closure of the fractures. The stress-sensitivity effect in fractures becomes more evident with a smaller fracture conductivity and a larger fracture-permeability modulus. From the pressure-buildup curves, a one-fourth-slope line characteristic of the bilinear-flow period and constant derivatives of 0.5 representing a pseudoradial-flow regime can be clearly observed. Only fracture conductivity near the wellbore at the shut-in time can be estimated from the buildup pressures obtained in this work, whereas pressure-buildup analysis derived from the traditional superposition principle will result in an erroneous evaluation of the stress-sensitive fracture conductivity. It is also found that the effect of permeability hysteresis in the fractures has a negligible impact on the pressure-buildup responses.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chen Li

The development and utilization of coalbed methane is of great significance to reduce carbon dioxide emission. Through the research, this paper presents a fast analytical solution method for the productivity of coalbed methane reservoir with finite-conductivity fractured well and stimulated reservoir volume region. Based on the dual-porosity flowing mechanism, combined with the Langmuir adsorb equation, Fick diffusion law, and Darcy law, a mathematical model considering diffusion in matrix and transport in natural fracture system is established, using spherical matrix to describe the transient steady-state sorption, and using cubic matrix to describe the pseudosteady-state sorption. Then, combined with the inner system and outer system, the analytical solution was obtained. Furthermore, the accuracy of the solution was validated against a numerical simulation. According to the Duhamel principle, the effect of wellbore storage and skin factor was got. Due to the SRV region, the linear flow and radial flow will appear before the pressure wave reach the outer region. And then, based on the pressure analysis result, we will have made the sensitivity analysis with different influence parameter. The result reveals that storage coefficient and conductivity factor mainly influence the early time; the permeability ratio and dimensionless SRV region radius mainly influence the property of SRV region. Finally, the analytical solution of the new model was applied to field history match. This model takes into account the adsorption and desorption characteristics of coalbed methane, as well as the SRV zones generated during fracturing. The calculation speed of the new model is increased while the calculation accuracy is retained, and the intensity of software application is reached. The model achieves the purpose of rapid evaluation and accurate prediction of gas well productivity and obtains a set of productivity evaluation method suitable for coalbed methane reservoir with fractured vertical well, which provides a basis for the development and productivity evaluation of coalbed methane reservoir in domestic and international cooperation.


2014 ◽  
Vol 17 (3) ◽  
pp. 239-254 ◽  
Author(s):  
Song Li ◽  
Yili Kang ◽  
Daqi Li ◽  
Lijun You ◽  
Chengyuan Xu

Author(s):  
Wenzhuo Cao ◽  
Qinghua Lei ◽  
Wu Cai

AbstractThe deformation and permeability of coal are largely affected by the presence and distribution of natural fractures such as cleats and bedding planes with orthogonal and abutting characteristics, resulting in distinct hydromechanical responses to stress loading during coal mining processes. In this research, a two-dimensional (2D) fracture network is constructed based on a real coal cleat trace data collected from the Fukang mine area, China. Realistic multi-stage stress loading is designed to sequentially mimic an initial equilibrium phase and a mining-induced perturbation phase involving an increase of axial stress and a decrease of confining stress. The geomechanical and hydrological behaviour of the fractured coal under various stress loading conditions is modelled using a finite element model, which can simulate the deformation of coal matrix, the shearing and dilatancy of coal cleats, the variation of cleat aperture induced by combined effects of closure/opening, and shear and tensile-induced damage. The influence of different excavation stress paths and directions of mining is further investigated. The simulation results illustrate correlated variations among the shear-induced cleat dilation, damage in coal matrix, and equivalent permeability of the fractured coal. Model results are compared with results of previous work based on conventional approaches in which natural fracture networks are not explicitly represented. In particular, the numerical model reproduces the evolution of equivalent permeability under the competing influence of the effective stress perpendicular to cleats and shear-induced cleat dilation and associated damage. Model results also indicate that coal mining at low stress rates is conducive to the stability of surrounding coal seams, and that coal mining in parallel to cleat directions is desirable. The research findings of this paper have important implications for efficient and safe exploitation of coal and coalbed methane resources.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1322-1341 ◽  
Author(s):  
Liwu Jiang ◽  
Tongjing Liu ◽  
Daoyong Yang

Summary Non-Darcy flow and the stress-sensitivity effect are two fundamental issues that have been widely investigated in transient pressure analysis for fractured wells. The main object of this work is to establish a semianalytical solution to quantify the combined effects of non-Darcy flow and stress sensitivity on the transient pressure behavior for a fractured horizontal well in a naturally fractured reservoir. More specifically, the Barree-Conway model is used to quantify the non-Darcy flow behavior in the hydraulic fractures (HFs), while the permeability modulus is incorporated into mathematical models to take into account the stress-sensitivity effect. In this way, the resulting nonlinearity of the mathematical models is weakened by using Pedrosa's transform formulation. Then a semianalytical method is applied to solve the coupled nonlinear mathematical models by discretizing each HF into small segments. Furthermore, the pressure response and its corresponding derivative type curve are generated to examine the combined effects of non-Darcy flow and stress sensitivity. In particular, stress sensitivity in HF and natural-fracture (NF) subsystems can be respectively analyzed, while the assumption of an equal stress-sensitivity coefficient in the two subsystems is no longer required. It is found that non-Darcy flow mainly affects the early stage bilinear and linear flow regime, leading to an increase in pressure drop and pressure derivative. The stress-sensitivity effect is found to play a significant role in those flow regimes beyond the compound-linear flow regime. The existence of non-Darcy flow makes the effect of stress sensitivity more remarkable, especially for the low-conductivity cases, while the stress sensitivity in fractures has a negligible influence on the early time period, which is dominated by non-Darcy flow behavior. Other parameters such as storage ratio and crossflow coefficient are also analyzed and discussed. It is found from field applications that the coupled model tends to obtain the most-reasonable matching results, and for that model there is an excellent agreement between the measured and simulated pressure response.


2012 ◽  
Vol 52 (1) ◽  
pp. 587 ◽  
Author(s):  
Hassan Bahrami ◽  
Vineeth Jayan ◽  
Reza Rezaee ◽  
Dr Mofazzal Hossain

Welltest interpretation requires the diagnosis of reservoir flow regimes to determine basic reservoir characteristics. In hydraulically fractured tight gas reservoirs, the reservoir flow regimes may not clearly be revealed on diagnostic plots of transient pressure and its derivative due to extensive wellbore storage effect, fracture characteristics, heterogeneity, and complexity of reservoir. Thus, the use of conventional welltest analysis in interpreting the limited acquired data may fail to provide reliable results, causing erroneous outcomes. To overcome such issues, the second derivative of transient pressure may help eliminate a number of uncertainties associated with welltest analysis and provide a better estimate of the reservoir dynamic parameters. This paper describes a new approach regarding welltest interpretation for hydraulically fractured tight gas reservoirs—using the second derivative of transient pressure. Reservoir simulations are run for several cases of non-fractured and hydraulically fractured wells to generate different type curves of pressure second derivative, and for use in welltest analysis. A field example from a Western Australian hydraulically fractured tight gas welltest analysis is shown, in which the radial flow regime could not be identified using standard pressure build-up diagnostic plots; therefore, it was not possible to have a reliable estimate of reservoir permeability. The proposed second derivative of pressure approach was used to predict the radial flow regime trend based on the generated type curves by reservoir simulation, to estimate the reservoir permeability and skin factor. Using this analysis approach, the permeability derived from the welltest was in good agreement with the average core permeability in the well, thus confirming the methodology’s reliability.


Sign in / Sign up

Export Citation Format

Share Document