scholarly journals Stress-Dependent Deformation and Permeability of a Fractured Coal Subject to Excavation-Related Loading Paths

Author(s):  
Wenzhuo Cao ◽  
Qinghua Lei ◽  
Wu Cai

AbstractThe deformation and permeability of coal are largely affected by the presence and distribution of natural fractures such as cleats and bedding planes with orthogonal and abutting characteristics, resulting in distinct hydromechanical responses to stress loading during coal mining processes. In this research, a two-dimensional (2D) fracture network is constructed based on a real coal cleat trace data collected from the Fukang mine area, China. Realistic multi-stage stress loading is designed to sequentially mimic an initial equilibrium phase and a mining-induced perturbation phase involving an increase of axial stress and a decrease of confining stress. The geomechanical and hydrological behaviour of the fractured coal under various stress loading conditions is modelled using a finite element model, which can simulate the deformation of coal matrix, the shearing and dilatancy of coal cleats, the variation of cleat aperture induced by combined effects of closure/opening, and shear and tensile-induced damage. The influence of different excavation stress paths and directions of mining is further investigated. The simulation results illustrate correlated variations among the shear-induced cleat dilation, damage in coal matrix, and equivalent permeability of the fractured coal. Model results are compared with results of previous work based on conventional approaches in which natural fracture networks are not explicitly represented. In particular, the numerical model reproduces the evolution of equivalent permeability under the competing influence of the effective stress perpendicular to cleats and shear-induced cleat dilation and associated damage. Model results also indicate that coal mining at low stress rates is conducive to the stability of surrounding coal seams, and that coal mining in parallel to cleat directions is desirable. The research findings of this paper have important implications for efficient and safe exploitation of coal and coalbed methane resources.

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1653
Author(s):  
Guofu Li ◽  
Yi Wang ◽  
Junhui Wang ◽  
Hongwei Zhang ◽  
Wenbin Shen ◽  
...  

Deep coalbed methane (CBM) is widely distributed in China and is mainly commercially exploited in the Qinshui basin. The in situ stress and moisture content are key factors affecting the permeability of CH4-containing coal samples. Therefore, considering the coupled effects of compressing and infiltrating on the gas permeability of coal could be more accurate to reveal the CH4 gas seepage characteristics in CBM reservoirs. In this study, coal samples sourced from Tunlan coalmine were employed to conduct the triaxial loading and gas seepage tests. Several findings were concluded: (1) In this triaxial test, the effect of confining stress on the permeability of gas-containing coal samples is greater than that of axial stress. (2) The permeability versus gas pressure curve of coal presents a ‘V’ shape evolution trend, in which the minimum gas permeability was obtained at a gas pressure of 1.1MPa. (3) The gas permeability of coal samples decreased exponentially with increasing moisture content. Specifically, as the moisture content increasing from 0.18% to 3.15%, the gas permeability decreased by about 70%. These results are expected to provide a foundation for the efficient exploitation of CBM in Qinshui basin.


2014 ◽  
Vol 543-547 ◽  
pp. 3967-3973
Author(s):  
Bao Shan Han

There are abundant CBM (Coalbed Methane) in China. These CBM has caused a remarkable problem to the coal-mining in China. In order to improve the structure of Chinese energy and eliminate the risk of coal mine gas, the relevant industries and sections have implemented many explorations in CBM enriched areas. With great achievements, there are many important problems in the actions of CBM exploitation. The disadvantageous interaction of the surface CBM well and the later coal mining has been ignored at all. There are many disadvantages and defects. To solve these problems and eliminate or weaken the disadvantageous, the scientific and reasonable design of surface CBM well location is an important step. With the thinking of surface condition, coal mining plan, the arrangement of coal mine laneway, the direction and scale of the in-situ stress, and thinking more about the negative influence to and of surface CBM well, according to the theories of mining dynamics, mining engineering, mining geomechanics, and the CBM engineering, the design theory of the surface CBM well net can be studied. Finally, the arrangement principle of CBM product well in coal field is presented. The existing or future coal pillar will be a critical location for the surface CBM well location.


2021 ◽  
pp. 1-18
Author(s):  
Russell T. Ewy

Summary Wells are sometimes deformed due to geomechanical shear slip, which occurs on a localized slip surface, such as a bedding plane, fault, or natural fracture. This can occur in the overburden above a conventional reservoir (during production) or within an unconventional reservoir (during completion operations). Shear slip will usually deform the casing into a recognizable shape, with lateral offset and two opposite-trending bends, and ovalized cross sections. Multifinger casing caliper tools have a recognizable response to this shape and are especially useful for diagnosing well shear. Certain other tools can also provide evidence for shear deformation. Shear deformations above a depleting, compacting reservoir are usually due to slip on bedding planes. They usually occur at multiple depths and are driven by overburden bending in response to reservoir differential compaction. Shear deformations in unconventional reservoirs, for the examples studied, have been found to be caused by slip on bedding planes and natural fractures. In both cases, models, field data, and physical reasoning suggest that slip occurs primarily due to fluid pressurization of the interface. In the case of bedding plane slip, fracturing pressure greater than the vertical stress (in regions where the vertical stress is the intermediate stress) could lead to propagation of a horizontal fracture, which then slips in shear.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Tianran Ma ◽  
Hao Xu ◽  
Chaobin Guo ◽  
Xuehai Fu ◽  
Weiqun Liu ◽  
...  

As a complex two-phase flow in naturally fractured coal formations, the prediction and analysis of CBM production remain challenging. This study presents a discrete fracture approach to modeling coalbed methane (CBM) and water flow in fractured coal reservoirs, particularly the influence of fracture orientation, fracture density, gravity, and fracture skeleton on fluid transport. The discrete fracture model is first verified by two water-flooding cases with multi- and single-fracture configurations. The verified model is then used to simulate CBM production from a discrete fractured reservoir using four different fracture patterns. The results indicate that fluid behavior is significantly affected by orientation, density, and fracture connectivity. Finally, several cases are performed to investigate the influence of gravity and fracture skeleton. The simulation results show that gas migrates upwards to the top reservoir during fluid extraction owing to buoyancy and the connected fracture skeleton plays a dominant role in fluid transport and methane production efficiency. Overall, the developed discrete fracture model provides a powerful tool to study two-phase flow in fractured coal reservoirs.


Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 543
Author(s):  
Wei Cheng ◽  
Ruidong Yang ◽  
Qin Zhang

A petrographic coal structure of Late Permian coals from the Liupanshui coalfield, Western Guizhou, SW China, has been distinguished for its novel macro-lithological characteristics. Petrographic, mineralogical and geochemical studies have been conducted for a typical coal sample (No.3 coal, Songhe coalmine, Panzhou County, China) and its geological genesis and significance for coalbed methane (CBM) evaluation is accordingly discussed. It was found that coal is characterized by a banded structure with intensively fractured vitrain sublayers, where a great number of fractures were developed and filled with massive inorganic matter. The study of coal quality, coal petrography, mineralogy and lanthanides and yttrium (REY) geochemistry of the infilling mineral matter (IMM) indicates that this fractured coal structure resulted from the tissues of coal-forming plants or coal matrix shrinkage, as well as the precipitation of calcium rich groundwater and the addition of terrigenous materials. The coal depositional environment and coal-forming plant are considered to have played a role in inducing the special fractures. This provides a scientific reference for the study of CBM for coal with this fractured structure, such as the Late Permian coal from the western border of Guizhou Province, SW China.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Chuanyin Jiang ◽  
Xiaoguang Wang ◽  
Zhixue Sun ◽  
Qinghua Lei

We investigated the effect of in situ stresses on fluid flow in a natural fracture network. The fracture network model is based on an actual critically connected (i.e., close to the percolation threshold) fracture pattern mapped from a field outcrop. We derive stress-dependent fracture aperture fields using a hybrid finite-discrete element method. We analyze the changes of aperture distribution and fluid flow field with variations of in situ stress orientation and magnitude. Our simulations show that an isotropic stress loading tends to reduce fracture apertures and suppress fluid flow, resulting in a decrease of equivalent permeability of the fractured rock. Anisotropic stresses may cause a significant amount of sliding of fracture walls accompanied with shear-induced dilation along some preferentially oriented fractures, resulting in enhanced flow heterogeneity and channelization. When the differential stress is further elevated, fracture propagation becomes prevailing and creates some new flow paths via linking preexisting natural fractures, which attempts to increase the bulk permeability but attenuates the flow channelization. Comparing to the shear-induced dilation effect, it appears that the propagation of new cracks leads to a more prominent permeability enhancement for the natural fracture system. The results have particularly important implications for predicting the hydraulic responses of fractured rocks to in situ stress fields and may provide useful guidance for the strategy design of geofluid production from naturally fractured reservoirs.


2020 ◽  
pp. 014459872096083
Author(s):  
Yulong Liu ◽  
Dazhen Tang ◽  
Hao Xu ◽  
Wei Hou ◽  
Xia Yan

Macrolithotypes control the pore-fracture distribution heterogeneity in coal, which impacts stimulation via hydrofracturing and coalbed methane (CBM) production in the reservoir. Here, the hydraulic fracture was evaluated using the microseismic signal behavior for each macrolithotype with microfracture imaging technology, and the impact of the macrolithotype on hydraulic fracture initiation and propagation was investigated systematically. The result showed that the propagation types of hydraulic fractures are controlled by the macrolithotype. Due to the well-developed natural fracture network, the fracture in the bright coal is more likely to form the “complex fracture network”, and the “simple” case often happens in the dull coal. The hydraulic fracture differences are likely to impact the permeability pathways and the well productivity appears to vary when developing different coal macrolithtypes. Thus, considering the difference of hydraulic fracture and permeability, the CBM productivity characteristics controlled by coal petrology were simulated by numerical simulation software, and the rationality of well pattern optimization factors for each coal macrolithotype was demonstrated. The results showed the square well pattern is more suitable for dull coal and semi-dull coal with undeveloped natural fractures, while diamond and rectangular well pattern is more suitable for semi-bright coal and bright coal with more developed natural fractures and more complex fracturing fracture network; the optimum wells spacing of bright coal and semi-bright coal is 300 m and 250 m, while that of semi-dull coal and dull coal is just 200 m.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zetian Zhang ◽  
Ru Zhang ◽  
Guo Li ◽  
Hegui Li ◽  
Jianfeng Liu

The mechanical property of coal, influencing mining activity considerably, is significantly determined by the natural fracture distributed within coal mass. In order to study the effecting mechanism of bedding structure on mechanical property of coal, a series of uniaxial compression tests and mesoscopic tests have been conducted. The experimental results show that the distribution characteristic of calcite particles, which significantly influences the growth of cracks and the macroscopic mechanical properties of coal, is obviously affected by the bedding structure. Specifically, the uniaxial compression strength of coal sample is mainly controlled by bedding structure, and the average peak stress of specimens with axes perpendicular to the bedding planes is 20.00 MPa, which is 2.88 times the average amount of parallel ones. The test results also show a close relationship between the bedding structure and the whole deformation process under uniaxial loading.


Sign in / Sign up

Export Citation Format

Share Document