scholarly journals The Role of Low-Load Diesel in Improved Renewable Hosting Capacity within Isolated Power Systems

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4053
Author(s):  
James Hamilton ◽  
Michael Negnevitsky ◽  
Xiaolin Wang ◽  
Evgenii Semshchikov

Isolated communities are progressively integrating renewable generation to reduce the societal, economic and ecological cost of diesel generation. Unfortunately, as renewable penetration and load variability increase, systems require greater diesel generation reserves, constraining renewable utilisation. Improved diesel generator flexibility can reduce the requirement for diesel reserves, allowing increased renewable hosting. Regrettably, it is uncommon for utilities to modify diesel generator control during the integration of renewable source generation. Identifying diesel generator flexibility and co-ordination as an essential component to optimising system hosting capacity, this paper investigates improved diesel generator flexibility and coordination via low-load diesel application. Case study comparisons for both high- and low-penetration hybrid diesel power systems are presented in King Island, Australia, and Moloka`i, Hawai`i, respectively. For King Island, the approach details a 50% reduction in storage requirement, while for Moloka`i the application supports a 27% increase in renewable hosting capacity.

Author(s):  
Michael Negnevitsky ◽  
◽  
Dusan Nikolic ◽  
Martin de Groot ◽  
◽  
...  

Isolated power systems (IPSs) worldwide are traditionally powered by diesel generators that are very expensive to run and produce harmful emissions. In order to mitigate these problems, wind turbines are being introduced into existing IPSs. Although this integration has been reasonably effective at reducing running costs and emissions, high levels of wind penetration cause large system frequency variations, resulting in a prolonged synchronization process for newly dispatched diesel generators. Long synchronization can compromise the stability of a small IPS. This paper examines the diesel synchronization problem using a real IPS as a case study and offers a solution by introducing the concept of predictive synchronization based on adaptive neuro-fuzzy systems. Simulation results demonstrate a significant reduction in diesel generator synchronization times.


2012 ◽  
Vol 49 ◽  
pp. 189-196 ◽  
Author(s):  
Sari Murni ◽  
Jonathan Whale ◽  
Tania Urmee ◽  
John Davis ◽  
David Harries

Smart Cities ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 840-863
Author(s):  
Hugo Algarvio

Global warming contributes to the worldwide goal of a sustainable carbon-neutral society. Currently, hydroelectric, wind and solar power plants are the most competitive renewable technologies. They are limited to the primary resource availability, but while hydroelectric power plants (HPPs) can have storage capacity but have several geographical limitations, wind and solar power plants have variable renewable energy (VRE) with stochastic profiles, requiring a substantially higher investment when equipped with battery energy storage systems. One of the most affordable solutions to compensate the stochastic behaviour of VRE is the active participation of consumers with demand response capability. Therefore, the role of citizen energy communities (CECs) can be important towards a carbon-neutral society. This work presents the economic and environmental advantages of CECs, by aggregating consumers, prosumers and VRE at the distribution level, considering microgrid trades, but also establishing bilateral agreements with large-scale VRE and HPPs, and participating in electricity markets. Results from the case-study prove the advantages of CECs and self-consumption. Currently, CECs have potential to be carbon-neutral in relation to electricity consumption and reduce consumers’ costs with its variable term until 77%. In the future, electrification may allow CECs to be fully carbon-neutral, if they increase their flexibility portfolio.


2021 ◽  
Vol 897 (1) ◽  
pp. 012015
Author(s):  
Ronald Ayala Ramírez ◽  
Javier Tenesaca Chacaguasay ◽  
Juan Lata García

Abstract Recently, the idea of hybrid power systems (HES) has attracted interest for the electrification of isolated or energy efficient areas. This document examines the modelling and optimal dimensions of a hybrid microgrid using different dispatch strategies. The sizing of the HES components such as Photovoltaic panels, Batteries, Inverter, a Diesel generator has been optimized by three strategies: (i) load tracking, (ii) cycle load, and (iii) combined dispatch. The location of the case study is in a rural community in Ecuador whose load profile is 17 kW. By utilizing HOMER software, optimization for the HES was achieved with the Combined Dispatch strategy (CD) which presented the minimum levels in the net annual cost (NPC), initial capital, levelized cost of energy (LCOE) of $ 90,073.10, $ 21,208 and $ 0.2016 / kWh, respectively. The conclusions offer a guide to consider the resources and generation combination essential for the optimal operation of an island microgrid with different dispatch scenarios.


Author(s):  
L Farrier

The need to integrate energy storage systems (ESS) with warship power systems to meet future dynamic loads such as high power electric weapons is apparent. This opens up challenges with design integration of ESS with power systems and operational aspects such as steady-state, transient and faulted performance. This paper describes the integration of ESS with a candidate power system as a case study as part of an ongoing timedomain simulation investigation at University College London. The paper describes the models and power management structure of the simulation testbed, that comprises battery based ESS and diesel generators in a hybrid electric power and propulsion system. The results of two scenarios are presented, the first verifies power sharing between a diesel generator and ESS during load levelling under single generator operation, the second illustrates the ability of the ESS to provide ride through power during a generator fault on the main distribution bus. The conclusions suggest that under voltage in the candidate system outside of acceptable limits occurs during fault ride through when in single generator operation. 


1987 ◽  
Author(s):  
William A. Worrall ◽  
Ann W. Stockman

Sign in / Sign up

Export Citation Format

Share Document