scholarly journals Effect of Heat Source Placement on Natural Convection from Cylindrical Surfaces

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4334
Author(s):  
Andrej Kapjor ◽  
Peter Durcansky ◽  
Martin Vantuch

Placement of heat source can play a significant role in final heat output, or heat source effectivity. Because of this, there is a need to analyze thermal fields of the heat exchange system by natural convection, where the description by criterion equations is desired, as the net heat output from tubes can be quantified. Based on known theoretical models, numerical methods were adapted to calculate the heat output with natural air flow around tubes, where mathematical models were used to describe the heat transfer more precisely. After validation of heat transfer coefficients, the effect of wall and heat source placement was studied, and the Coanda effect was also observed. The heat source placement also has an effect at the boundary layer, which can change and therefore affect the overall heat transfer process. The optimal wall-to-cylinder distance for an array of horizontal cylinders near a wall was also expressed as a function of the Rayleigh number and number of cylinders in the array.

1996 ◽  
Vol 118 (1) ◽  
pp. 56-64 ◽  
Author(s):  
A. A. Dehghan ◽  
M. Behnia

Combined natural convection, conduction, and radiation heat transfer in an open-top upright cavity containing a discrete heat source has been modeled numerically. The surface emissivity has been varied and its effects on the flow and thermal fields have been determined for different values of Rayleigh number. The complex interaction of the three modes of heat transfer mechanisms is explored by solving the coupled convection, conduction, and radiation equations. It is noted that the inclusion of radiation has a significant effect on the flow, resulting in the formation of a recirculation zone within the cavity. Comparison of the local heat transfer coefficients for the conjugate analysis and no radiation case reveals that the inclusion of radiation has a negligible effect on the heat transfer performance of the heat source. However, comparison of the numerical results with experimental observations shows that accurate prediction of the flow and thermal fields is strongly dependent on the consideration of radiation heat transfer in the numerical case.


Author(s):  
J. D. Parker ◽  
T. E. Mullin

In the region just above the thermodynamic critical point, the thermodynamic properties vary rapidly with small changes in temperature. The rapid variation of the physical properties exerts a strong influence on the natural convection heat transfer process. Relatively large heat transfer coefficients are experienced in this region. Consideration of the fundamental equations involving conservation of mass momentum and energy has led to the establishment of a set of significant parameters to be considered in this problem. The derivation is essentially an extension of the work of Sparrow and Gregg (I) and is more adaptable to actual solution of the general variable property problem. The technique allows for variation in density, specific heat, viscosity, and thermal conductivity. An important step in the development is the use of thermodynamic relationships to obtain derivatives of properties with respect to temperature. A demonstration of the technique is made for Freon 114 using a Martin (2) equation of state along with Sutherland and Bromley equations for viscosity and thermal conductivity, corrected for pressure (3) (4). The use of a reference temperature in the variable property problem is critically discussed.


2015 ◽  
Vol 789-790 ◽  
pp. 489-495 ◽  
Author(s):  
Daniel Marcelo ◽  
Paul Villar Yacila ◽  
Raúl La Madrid Olivares

In Peru, jaggery making process has low energy efficiency and it is due to low heat transfer coefficients for natural convection linked to the sugar cane movement generated by the heat exchange between the sugarcane juice and the combustion gases. This low heat transfer coefficients are caused by improper heat exchangers designs. In this work, is performed an experimental analysis that consist in supplie heat to a pot containing sugarcane juice using a hot plate of constant electrical power. This study consist in identify boiling regimes and estimate the heat transfer coefficients linked to natural convection boiling, measuring: (i) the temperature at the bottom of the pot (ii) the temperature at the bottom level of sugarcane juice (iii) the temperature at middle level of sugarcane juice (iv) the temperature at free surface of sugarcane juice (v) rate of water evaporated. The method of linear regression and the correlation of Rohsenow were used for obtaining the values of the heat transfer coefficients ranging from 4088.6 W/m2°C to 12592.8 W/m2°C with power input ranging from 700W to 1300W.


Author(s):  
F. A. Jafar ◽  
G. R. Thorpe ◽  
O¨. F. Turan

Trickle bed chemical reactors and equipment used to cool horticultural produce usually involve three phase porous media. The fluid dynamics and heat transfer processes that occur in such equipment are generally quantified by means of empirical relationships between dimensionless groups. The research reported in this paper is motivated by the possibility of using detailed numerical simulations of the phenomena that occur in beds of irrigated porous media to obviate the need for empirical correlations. Numerical predictions are obtained using a CFD code (FLUENT) for 2-D configurations of three cylinders. Local and mean heat transfer coefficients around these non-contacting horizontal cylinders are calculated numerically. The present results compare well with those available in the literature. The numerical results provide an insight into the cooling mechanisms within beds of unsaturated porous media.


1996 ◽  
Vol 118 (1) ◽  
pp. 31-37 ◽  
Author(s):  
F. J. Asfia ◽  
B. Frantz ◽  
V. K. Dhir

External cooling of a light water reactor vessel by flooding of the concrete cavity with subcooled water is one of several management strategies currently being considered for accidents in which significant relocation of core material is predicted to occur. At present, uncertainty exists with respect to natural convection heat transfer coefficients between the pool of molten core material and the reactor vessel wall. In the present work, experiments were conducted to examine natural convection heat transfer in internally heated partially filled spherical pools with external cooling. In the experiments, Freon-113 was contained in a Pyrex bell jar, which was cooled externally with subcooled water. The pool was heated using a 750 W magnetron taken from a conventional microwave. The pool had a nearly adiabatic free surface. The vessel wall temperature was not uniform and varied from the stagnation point to the free surface. A series of chromel–alumel thermocouples was used to measure temperatures in both steady-state and transient conditions. Each thermocouple was placed in a specific vertical and radial location in order to determine the temperature distribution throughout the pool and along the inner and outer walls of the vessel. In the experiments, pool depth and radius were varied parametrically. Both local and averages heat transfer coefficients based on pool maximum temperature were obtained. Rayleigh numbers based on pool height were varied from 2 × 1010 to 1.1 × 1014. Correlations for the local heat transfer coefficient dependence on pool angle and for the dependence of average Nusselt number on Rayleigh number and pool depth have been developed.


2000 ◽  
Vol 122 (3) ◽  
pp. 485-491 ◽  
Author(s):  
G. A. Holtzman ◽  
R. W. Hill ◽  
K. S. Ball

A numerical study of natural convection in an isosceles triangular enclosure with a heated horizontal base and cooled upper walls is presented. Nearly every previous study conducted on this subject to date has assumed that the geometric plane of symmetry is also a plane of symmetry for the flow. This problem is re-examined over aspect ratios ranging from 0.2 to 1.0 and Grashof numbers from 103 to 105. It is found that a pitchfork bifurcation occurs at a critical Grashof number for each of the aspect ratios considered, above which the symmetric solutions are unstable to finite perturbations and asymmetric solutions are instead obtained. Results are presented detailing the occurrence of the pitchfork bifurcation in each of the aspect ratios considered, and the resulting flow patterns are described. A flow visualization study is used to validate the numerical observations. Computed local and mean heat transfer coefficients are also presented and compared with results obtained when flow symmetry is assumed. Differences in local values of the Nusselt number between asymmetric and symmetric solutions are found to be more than 500 percent due to the shifting of the buoyancy-driven cells. [S0022-1481(00)02503-2]


1979 ◽  
Vol 90 (2) ◽  
pp. 227-239 ◽  
Author(s):  
A. G. Bathelt ◽  
R. Viskanta ◽  
W. Leidenfrost

Melting from an electrically heated horizontal cylinder embedded in a paraffin (n-octadecane, fusion temperature 301·3 °K) has been studied experimentally. The shape of the solid-liquid interface has been determined photographically, and the local heat transfer coefficients have been measured using a shadowgraph technique. The experiments provide conclusive evidence of the important role played by natural convection in melting a solid due to an embedded cylindrical heat source. The four distinct pieces of quantitative evidence which contribute to this conclusion are the melt shape, surface temperature, local and average heat transfer coefficients and their variation with time.The experimental findings prove the importance of natural convection in phase change problems involving melting and indicate that continued practice of neglecting the effects in the analysis of such problems does not appear reasonable. Natural convection should be considered in analysis and design of systems involving phase change.


Author(s):  
Feng Xu ◽  
Qiusheng Liu ◽  
Satoshi Kawaguchi ◽  
Makoto Shibahara

Abstract The blanket modules of first wall need bear tremendous heat flux due to the very high temperature of plasma in the nuclear fusion reactor. Therefore, it is significant to clarify the knowledge of transient heat transfer process for helium gas flowing in the tubes installed in the blanket modules. In this research, the transient heat transfer process of turbulent forced convection for helium gas flowing in a horizontal minichannel was experimentally investigated. The test tube made of platinum with the inner diameter of 1.8 mm, the wall thickness of 0.1 mm and the effective length of 90 mm was heated by a direct current from power source. The heat generation rate of the test tube, Q̇, was raised with an exponential function, Q̇ = Q0 exp(t/τ), where Q0 is the initial heat generation rate, t is time, and τ is e-folding time of heat generation rate. The heat generation rates of the test tube were controlled and measured by a heat input control system. The flow rates were adjusted by the bypass of gas loop and measured by the turbine flow meter. The experiment was conducted under the e-folding time of heat generation rate ranged from 40 ms to 15 s. Based on experimental data, it is obvious that the heat flux and temperature difference between surface temperature of test tube and bulk temperature of helium gas increased with the exponentially increasing of heat generation rate. At the same flow velocity, the heat transfer coefficients approached constant values when the e-folding time is longer than about 1 s (quasi-steady state), but increased with a decrease of e-folding time when the e-folding time is smaller than about 1 s (transient state). The heat transfer coefficients increased with the increase in flow velocities but showed less dependent on flow velocities at shorter e-folding time. Furthermore, the Nusselt number under quasi-steady and transient condition was affected by the Reynolds number and the Fourier number.


Sign in / Sign up

Export Citation Format

Share Document