scholarly journals Industrial Facility Electricity Consumption Forecast Using Artificial Neural Networks and Incremental Learning

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4774
Author(s):  
Daniel Ramos ◽  
Pedro Faria ◽  
Zita Vale ◽  
João Mourinho ◽  
Regina Correia

Society’s concerns with electricity consumption have motivated researchers to improve on the way that energy consumption management is done. The reduction of energy consumption and the optimization of energy management are, therefore, two major aspects to be considered. Additionally, load forecast provides relevant information with the support of historical data allowing an enhanced energy management, allowing energy costs reduction. In this paper, the proposed consumption forecast methodology uses an Artificial Neural Network (ANN) and incremental learning to increase the forecast accuracy. The ANN is retrained daily, providing an updated forecasting model. The case study uses 16 months of data, split in 5-min periods, from a real industrial facility. The advantages of using the proposed method are illustrated with the numerical results.

2014 ◽  
Vol 672-674 ◽  
pp. 2085-2097 ◽  
Author(s):  
Sue Ling Lai ◽  
Ming Liu ◽  
Kuo Cheng Kuo ◽  
Ray Chang

There have been considerable efforts contributed to the development of effective energy demand forecast models due to its critical role for economic development and environmental protection. This study focused on the adoption of artificial neural network (ANN) and autoregressive integrated moving average (ARIMA) models for energy consumption forecasting in Hong Kong over the period of 1975-2010. Four predictors were considered, including population, GDP, exports, and total visitor arrivals. The results show most ANN models demonstrate acceptable forecast accuracy when single predictor is considered. The best single input model is the case with GDP as predictor. Population and exports are the next proper single inputs. The model with total visitor arrivals as sole predictor does not perform satisfactorily. This indicates that tourism development demonstrates a different pattern from that of energy consumption. In addition, the forecast accuracy of ANN does not improve considerably as the number of predictors increase. Findings imply that with the ANN approach, choosing appropriate predictors is more important than increasing the number of predictors. On the other hand, ARIMA generates forecasts as accurate as some good cases by ANN. Results suggest that ARIMA is not only a parsimonious but effective approach for energy consumption forecasting in Hong Kong.


Author(s):  
N. Ab. Wahab ◽  
Z. Mat Yasin ◽  
N. A. Salim ◽  
N. F. A. Aziz

<p>The energy management of electrical machine is significant to ensure efficient power consumption. Mismanagement of energy consumption could give impact on low efficiency of energy consumption that leads to power wastage.  This paper presents analysis of power consumption and electricity costing of the electrical machineries and equipment in High Voltage (HV) and Electrical Machine (EM) Laboratories at Faculty of Electrical Engineering (FKE), Universiti Teknologi MARA (UiTM) Shah Alam, Selangor, Malaysia. The electrical data are collected using Fluke Meter 1750. Based on the analysis, it is found that the estimated annually electricity cost for HV Laboratory and EM Laboratory are RM 392.00 and RM 3197.76 respectively. For prediction of energy consumption of the two laboratories, Artificial Neural Network (ANN) algorithm is applied as computational tool using feedforward network type. The results show that the ANN is successfully modelled to predict the energy consumption.</p>


Author(s):  
Omar Chamorro Atalaya ◽  
Angel Quesquen-Porras ◽  
Dora Arce Santillan

<span>This article presents the development of a lighting control network to reduce the energy consumption of a commercial building, using the KNX protocol; because of the high rates of electricity consumption, the same that are reflected in the payment of the electricity supply. For this, the design of the network architecture is carried out, the tree type quality and it has KNX, DALI components and LED luminaires, which are interconnected by means of an Ethernet type BUS; The KNX protocol configuration is then performed using the ETS version 5 software; carries out the implementation of KNX technology, determines the reduction of energy consumption by 82.33%. Likewise, emissions of carbon dioxide (CO2), one of the main gases involved in climate change, were reduced by 85%. With these results we obtain economic and environmental benefits; Reason why it is proposed to perform the same procedure for the control of air conditioning systems, since their operation represents 32.8% of the energy consumption of an establishment.</span>


Author(s):  
Atul Anand ◽  
L Suganthi

In the present study, a hybrid optimizing algorithm has been proposed using Genetic Algorithm (GA)and Particle Swarm Optimization (PSO) for Artificial Neural Network (ANN) to improve the estimation of electricity demand of the state of Tamil Nadu in India. The GA-PSO model optimizes the coefficients of factors of gross state domestic product (GSDP) , electricity consumption per capita, income growth rate and consumer price index (CPI) that affect the electricity demand. Based on historical data of 25 years from 1991 till 2015 , the simulation results of GA-PSO models are having greater accuracy and reliability than single optimization methods based on either PSO or GA. The forecasting results of ANN-GA-PSO are better than models based on single optimization such as ANN-BP, ANN-GA, ANN-PSO models. Further the paper also forecasts the electricity demand of Tamil Nadu based on two scenarios. First scenario is the "as-it-is" scenario , the second scenario is based on milestones set for achieving goals of "Vision 2023" document for the state. The present research also explores the causality between the economic growth and electricity demand in case of Tamil Nadu. The research indicates that a direct causality exists between GSDP and the electricity demand of the state.


2014 ◽  
Vol 83 ◽  
pp. 108-117 ◽  
Author(s):  
Vito Introna ◽  
Vittorio Cesarotti ◽  
Miriam Benedetti ◽  
Sonia Biagiotti ◽  
Raffaele Rotunno

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1772 ◽  
Author(s):  
Seungwon Jung ◽  
Jihoon Moon ◽  
Sungwoo Park ◽  
Seungmin Rho ◽  
Sung Wook Baik ◽  
...  

For efficient and effective energy management, accurate energy consumption forecasting is required in energy management systems (EMSs). Recently, several artificial intelligence-based techniques have been proposed for accurate electric load forecasting; moreover, perfect energy consumption data are critical for the prediction. However, owing to diverse reasons, such as device malfunctions and signal transmission errors, missing data are frequently observed in the actual data. Previously, many imputation methods have been proposed to compensate for missing values; however, these methods have achieved limited success in imputing electric energy consumption data because the period of data missing is long and the dependency on historical data is high. In this study, we propose a novel missing-value imputation scheme for electricity consumption data. The proposed scheme uses a bagging ensemble of multilayer perceptrons (MLPs), called softmax ensemble network, wherein the ensemble weight of each MLP is determined by a softmax function. This ensemble network learns electric energy consumption data with explanatory variables and imputes missing values in this data. To evaluate the performance of our scheme, we performed diverse experiments on real electric energy consumption data and confirmed that the proposed scheme can deliver superior performance compared to other imputation methods.


Sign in / Sign up

Export Citation Format

Share Document