scholarly journals Conventional and Second Order Sliding Mode Control of Permanent Magnet Synchronous Motor Fed by Direct Matrix Converter: Comparative Study

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5093
Author(s):  
Abdelhakim Dendouga

The main objective of this work revolves around the design of second order sliding mode controllers (SOSMC) based on the super twisting algorithm (STA) for asynchronous permanent magnet motor (PMSM) fed by a direct matrix converter (DMC), in order to improve the effectiveness of the considered drive system. The SOSMC was selected to minimize the chattering phenomenon caused by the conventional sliding mode controller (SMC), as well to decrease the level of total harmonic distortion (THD) produced by the drive system. In addition, the literature has taken a great interest in the STA due to its robustness to modeling errors and to external disturbances. Furthermore, due to its low conduction losses, the space vector approach was designated as a switching law to control the DMC. In addition, the topology and design method of the damped passive filter, which allows improvement of the waveform and attenuation of the harmonics of the input current, have been detailed. Finally, to discover the strengths and weaknesses of the proposed control approach based on SOSMC, a comparative study between the latter and that using the conventional SMC was executed. The results obtained confirm the effectiveness of SOSMC over the conventional SMC under different operating conditions.

2021 ◽  
Vol 14 (1) ◽  
pp. 484-495
Author(s):  
Rania Moutchou ◽  
◽  
Ahmed Abbou ◽  
Salah Rhaili ◽  
◽  
...  

This paper presents a modelling study and focuses on an advanced higher order slip mode control strategy (Super Twisting Algorithm) for a variable speed wind turbine based on a permanent magnet synchronous generator to capture the maximum possible wind power from the turbine while simultaneously reducing the effect of mechanical stress, powered by a voltage inverter and controlled by vector PWM technique. This paper presents first and second order sliding mode control schemes. On the other hand, a challenging matter of pure SMC of order one can be summed up in the produced chattering phenomenon. In this work, this issue has been mitigated by implementing a new control. The proposed control, characterized by a precision in the case of a continuation of a significant reduction of the interference phenomenon, successfully addresses the problems of essential non-linearity of wind turbine systems. This type of control strategy presents more advanced performances such as behaviour without chattering (no additional mechanical stress), excellent convergence time, robustness in relation to external disturbances (faults in the network) and to non-modelled dynamics (generator and turbine) which have been widely used in power system applications by first order sliding mode control. In particular, second-order sliding regime control algorithms will be applied to the PMSG to ensure excellent dynamic performance. The suggested control is compared to the proportional-integral controller and sliding mode control of order one. The results of simulations under turbulent wind speed and parameter variations show the efficiency, robustness and significantly improved performance of the proposed control approach to distinguish and track quickly (about 10ms depending on the shading pattern) and at the same time saving the main priorities of the sliding mode of order one by reducing the existing chatter. The systems performances were tested and compared using Matlab/Simulink Software.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1508 ◽  
Author(s):  
Adel Merabet

This paper presents a cascade second-order sliding mode control scheme applied to a permanent magnet synchronous motor for speed tracking applications. The control system is comprised of two control loops for the speed and the armature current control, where the command of the speed controller (outer loop) is the reference of the q-current controller (inner loop) that forms the cascade structure. The sliding mode control algorithm is based on a single input-output state space model and a second order control structure. The proposed cascade second order sliding mode control approach is validated on an experimental permanent magnet synchronous motor drive. Experimental results are provided to validate the effectiveness of the proposed control strategy with respect to speed and current control. Moreover, the robustness of the second-order sliding mode controller is guaranteed in terms of unknown disturbances and parametric and modeling uncertainties.


2011 ◽  
Vol 383-390 ◽  
pp. 5964-5971 ◽  
Author(s):  
Yi Biao Sun ◽  
Ya Nan Jing ◽  
Jia Kuan Xia

The direct-drive ring permanent magnet torque motor is easily affected by parameters changes and the load torque disturbances, which reduces the servo performance of the system. In order to enhance the robustness of the servo system, the super twisting algorithm based on the second order sliding mode control (SMC) is proposed as the speed controller of the direct-drive servo system. The super twisting algorithm need not know the information of the sliding mode time derivative, which through the continuous control measure the sliding mode and its derivative approach zero in finite time. This method not only guarantees the robustness of the servo system and eliminates chatting, but also enhances the static precision of the servo system. The simulation results show that the servo system of the direct-drive NC rotary table has a very strong robustness by adopting the control method against parameters changes and the external disturbances.


Sign in / Sign up

Export Citation Format

Share Document