scholarly journals A Review of Lithium-Ion Battery Fire Suppression

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5117 ◽  
Author(s):  
Mohammadmahdi Ghiji ◽  
Vasily Novozhilov ◽  
Khalid Moinuddin ◽  
Paul Joseph ◽  
Ian Burch ◽  
...  

Lithium-ion batteries (LiBs) are a proven technology for energy storage systems, mobile electronics, power tools, aerospace, automotive and maritime applications. LiBs have attracted interest from academia and industry due to their high power and energy densities compared to other battery technologies. Despite the extensive usage of LiBs, there is a substantial fire risk associated with their use which is a concern, especially when utilised in electric vehicles, aeroplanes, and submarines. This review presents LiB hazards, techniques for mitigating risks, the suppression of LiB fires and identification of shortcomings for future improvement. Water is identified as an efficient cooling and suppressing agent and water mist is considered the most promising technique to extinguish LiB fires. In the initial stages, the present review covers some relevant information regarding the material constitution and configuration of the cell assemblies, and phenomenological evolution of the thermal runaway reactions, which in turn can potentially lead to flaming combustion of cells and battery assemblies. This is followed by short descriptions of various active fire control agents to suppress fires involving LiBs in general, and water as a superior extinguishing medium in particular. In the latter parts of the review, the phenomena associated with water mist suppression of LiB fires are comprehensively reviewed.

2021 ◽  
Vol 17 ◽  
Author(s):  
Matt Ghiji ◽  
Ian Burch ◽  
Grant Gamble ◽  
Vasily Novozhilov ◽  
Paul Joseph ◽  
...  

1999 ◽  
Vol 51 (3) ◽  
pp. 295-305 ◽  
Author(s):  
Scott A. Mensing ◽  
Joel Michaelsen ◽  
Roger Byrne

AbstractMicroscopic charcoal from varved Santa Barbara Basin sediments was used to reconstruct a 560-yr record (A.D. 1425 to 1985) of Santa Ana fires. Comparison of large (>3750 μm2) charcoal with documented fire records in the Santa Barbara Ranger District shows that high accumulations correspond to large fires (>20,000 ha) that occurred during Santa Ana conditions. The charcoal record reconstructed a minimum of 20 large fires in the Santa Barbara region during the study period. The average time between fires shows no distinct change across three different land use periods: the Chumash period, apparently characterized by frequent burning, the Spanish/Early American period with nominal fire control, and the 20th century with active fire suppression. Pollen data support the conclusion that the fire regime has not dramatically changed during the last 500 yr. Comparison of large charcoal particle accumulation rates and precipitation reconstructed from tree rings show a strong relationship between climate and fire history, with large fires consistently occurring at the end of wet periods and the beginning of droughts.


Author(s):  
Jun Guo ◽  
Haibin Wang ◽  
Yuanhua He

Abstract The fire hazard of lithium-ion batteries (LIBs) poses a serious threat to their transportation and use. The purpose of this study is to investigate the efficiency of low-pressure twin-fluid water mist (TFWM) on suppressing lithium-ion battery fires. Experiments were executed to research the effect of working pressures and release stages on extinguishing the fire. Aqueous vermiculite dispersion (AVD), a commercial agent that was specifically designed to extinguish battery fires, was chosen to compare with the fire suppression performance of TFWM under the same conditions. The results indicate that the type 21,700 LIB fires could be controlled by applying the water mist within 10 s. The cooling ability at various working pressures (0.4, 0.8, 1.0, and 1.2 MPa) demonstrated an increase in inhibitory effects as the working pressure increased, and the optimal pressure was 1.2 MPa. The results further show that the extinguishing ability of the TFWM was better than the AVD agent. When the water mist was applied at the optimal working pressure, the surface temperature, flame temperature and concentration of CO reduced more significantly, compared with the AVD agent. Therefore, the TFWM shows considerable merit as a candidate to fight LIB fires.


2005 ◽  
Vol 156 (9) ◽  
pp. 331-337
Author(s):  
Marco Conedera ◽  
Patrick Roth ◽  
Gabriele Corti ◽  
Daniele Ryser

Fire-services are often unable to obtain a rapid overview of problems connected with wildfire fighting. In the last few decades the ideology for fire fighting has shifted from fire control(basically fire suppression) to fire management (including prevention,planning, and simulating). As a result, fire management is now included in landscape planning processes. The preliminary step in fire management is fire risk analysis, which takes into account fire hazard (probability and expected severity of a fire) and the outcome (total impact on the affected environment). In this contribution we present an approach for assessing fire risk on local levels in southern Switzerland.


2012 ◽  
Vol 610-613 ◽  
pp. 2501-2505
Author(s):  
Zhi Hao Sun ◽  
Jun Cheng Jiang ◽  
Lin Qiao

Extinguishing performance of portable water mist system was studied in this paper, considering the effects of additive addition and its type. The experimental results were statistically processed and numerically analysed by mathematical software. The results demonstrated that water mist with additive solution can extinguish pool fire efficiently due to physical and chemical mechanisms. The salt solution produces better fire control result than surfactant solution at low concentration, whereas the surfactant solution brings the better one at high concentration. Furthermore, the salt solution and surfactant solution have similar fire expansion behaviours to pure water in fire suppression with portable water mist system. The study, based on the application of the portable water mist system with additives, revealed that the system performed well on fire suppression and could be useful on movable fire control.


2017 ◽  
Vol 26 (7) ◽  
pp. 587 ◽  
Author(s):  
Christopher D. O'Connor ◽  
David E. Calkin ◽  
Matthew P. Thompson

During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions, topography and fuels are significant factors affecting potential fire spread and burn severity. We leverage these relationships to quantify the effects of topography, fuel characteristics, road networks and fire suppression effort on the perimeter locations of 238 large fires, and develop a predictive model of potential fire control locations spanning a range of fuel types, topographic features and natural and anthropogenic barriers to fire spread, on a 34000km2 landscape in southern Idaho and northern Nevada. The boosted logistic regression model correctly classified final fire perimeter locations on an independent dataset with 69% accuracy without consideration of weather conditions on individual fires. The resulting fire control probability surface has potential for reducing unnecessary exposure for fire responders, coordinating pre-fire planning for operational fire response, and as a network of locations to incorporate into spatial fire planning to better align fire operations with land management objectives.


2001 ◽  
Vol 10 (3) ◽  
pp. 277-294 ◽  
Author(s):  
B. YAO ◽  
W. K. CHOW

Sign in / Sign up

Export Citation Format

Share Document