scholarly journals A Power Hardware-in-the-Loop Based Method for FAPR Compliance Testing of the Wind Turbine Converters Control

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5203
Author(s):  
Zameer Ahmad ◽  
Jose Rueda Torres ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Peter Palensky ◽  
...  

A task for new power generation technologies, interfaced to the electrical grid by power electronic converters, is to stiffen the rate of change of frequency (RoCoF) at the initial few milliseconds (ms) after any variation of active power balance. This task is defined in this article as fast active power regulation (FAPR), a generic definition of the FAPR is also proposed in this study. Converters equipped with FAPR controls should be tested in laboratory conditions before employment in the actual power system. This paper presents a power hardware-in-the-loop (PHIL) based method for FAPR compliance testing of the wind turbine converter controls. The presented PHIL setup is a generic test setup for the testing of all kinds of control strategies of the grid-connected power electronic converters. Firstly, a generic PHIL testing methodology is presented. Later on, a combined droop- anFd derivative-based FAPR control has been implemented and tested on the proposed PHIL setup for FAPR compliance criteria of the wind turbine converters. The compliance criteria for the FAPR of the wind turbine converter controls have been framed based on the literature survey. Improvement in the RoCoF and and maximum underfrequency deviation (NADIR) has been observed if the wind turbine converter controls abide by the FAPR compliance criteria.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3274
Author(s):  
Jose Rueda Torres ◽  
Zameer Ahmad ◽  
Nidarshan Veera Kumar ◽  
Elyas Rakhshani ◽  
Ebrahim Adabi ◽  
...  

Future electrical power systems will be dominated by power electronic converters, which are deployed for the integration of renewable power plants, responsive demand, and different types of storage systems. The stability of such systems will strongly depend on the control strategies attached to the converters. In this context, laboratory-scale setups are becoming the key tools for prototyping and evaluating the performance and robustness of different converter technologies and control strategies. The performance evaluation of control strategies for dynamic frequency support using fast active power regulation (FAPR) requires the urgent development of a suitable power hardware-in-the-loop (PHIL) setup. In this paper, the most prominent emerging types of FAPR are selected and studied: droop-based FAPR, droop derivative-based FAPR, and virtual synchronous power (VSP)-based FAPR. A novel setup for PHIL-based performance evaluation of these strategies is proposed. The setup combines the advanced modeling and simulation functions of a real-time digital simulation platform (RTDS), an external programmable unit to implement the studied FAPR control strategies as digital controllers, and actual hardware. The hardware setup consists of a grid emulator to recreate the dynamic response as seen from the interface bus of the grid side converter of a power electronic-interfaced device (e.g., type-IV wind turbines), and a mockup voltage source converter (VSC, i.e., a device under test (DUT)). The DUT is virtually interfaced to one high-voltage bus of the electromagnetic transient (EMT) representation of a variant of the IEEE 9 bus test system, which has been modified to consider an operating condition with 52% of the total supply provided by wind power generation. The selected and programmed FAPR strategies are applied to the DUT, with the ultimate goal of ascertaining its feasibility and effectiveness with respect to the pure software-based EMT representation performed in real time. Particularly, the time-varying response of the active power injection by each FAPR control strategy and the impact on the instantaneous frequency excursions occurring in the frequency containment periods are analyzed. The performed tests show the degree of improvements on both the rate-of-change-of-frequency (RoCoF) and the maximum frequency excursion (e.g., nadir).


2013 ◽  
Vol 811 ◽  
pp. 657-660 ◽  
Author(s):  
You Jie Ma ◽  
Hong De Yuan ◽  
Xue Song Zhou

With the wide application of power electronic equipments in power system, more and more harmonic are poured into the power system, which cause power pollution and make the power quality problem increasingly serious. Active power filter (APF) is an important equipment to compensate harmonic and reactive current in power system. One of the key technologies lies in the real-time and accurate control. The fundamental principles of several control strategies of compensate current were presented, and the respective merit and demerit of these control strategies were pointed out with contrast analysis in this paper. Active power filter will achieve a higher performance and a wider application with the continuous development of the control strategy.


Author(s):  
Himani Himani ◽  
Navneet Sharma

<p><span>This paper describes the design and implementation of Hardware in the Loop (HIL) system D.C. motor based wind turbine emulator for the condition monitoring of wind turbines. Operating the HIL system, it is feasible to replicate the actual operative conditions of wind turbines in a laboratory environment. This method simply and cost-effectively allows evaluating the software and hardware controlling the operation of the generator. This system has been implemented in the LabVIEW based programs by using Advantech- USB-4704-AE Data acquisition card. This paper describes all the components of the systems and their operations along with the control strategies of WTE such as Pitch control and MPPT. Experimental results of the developed simulator using the test rig are benchmarked with the previously verified WT test rigs developed at the Durham University and the University of Manchester in the UK by using the generated current spectra of the generator. Electric subassemblies are most vulnerable to damage in practice, generator-winding faults have been introduced and investigated using the terminal voltage. This wind turbine simulator can be analyzed or reconfigured for the condition monitoring without the requirement of actual WT’s.</span></p>


Author(s):  
Hossein Hafezi ◽  
Hannu Laaksonen ◽  
Kimmo Kauhaniemi ◽  
Panu Lauttamus ◽  
Stefan Strandberg

Author(s):  
Kaoutar Rabyi ◽  
Hassane Mahmoudi

<p>To accommodate the regularity of wind energy; a storage device is required for the wind turbine. This paper proposesa constant power control for wind farm based Doubly Fed Induction Generator, the suggested storage device is supercapacitor which is connected to every wind turbine of the wind farm, it provides output power stability and compensates the deviations between the available wind energy input and the desired active power output. A Distribution – Static Synchronous Compensator (D-STATCOM) is connected at the point of connection of the wind farm, it controls the active and reactive power according to the demand from orpower generation to the electrical grid. The coordinated approach between the supercapacitors and the D-STATCOM mitigates the voltage magnitude fluctuations of the wind farm and provides support to the active power. Simulation studies are carried out inMATLAB/Simulink.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Otman Imrayed ◽  
Ibrahim Daho ◽  
H. M. Amreiz

Recently it has been observed that power electronic converters working under current mode control exhibit codimensional-2 bifurcations through the interaction of their slow-scale and fast-scale dynamics. In this paper, the authors further probe this phenomenon with the use of the saltation matrix instead of the Poincaré map. Using this method, the authors are able to study and analyze more exotic bifurcation phenomena that occur in cascade current mode controlled boost converter. Finally, we propose two control strategies that guarantee the stable period-one operation. Numerical and analytical results validate our analysis.


Sign in / Sign up

Export Citation Format

Share Document