scholarly journals Modeling of Axial Flux Permanent Magnet Generators

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5741
Author(s):  
Natalia Radwan-Pragłowska ◽  
Tomasz Węgiel ◽  
Dariusz Borkowski

This article focuses on modeling of an Axial Flux Permanent Magnet Generator (AFPMG). The authors analyzed selected variants of disk generators, including coreless stator constructions and with iron core ones, also taking into account the Permanent Magnet (PM) arrangement in order to show the way to obtain the optimal machine characteristics based on analytical equations. In addition to the full model, which takes into account the higher harmonics of the magnetic field distribution, the paper presents a simplified mathematical model developed for generator operation cases such as standalone, connected to a 3-phase power grid and loaded with a diode rectifier. The analytical and finite-element method (FEM) calculations were performed as well as laboratory tests to confirm the correctness of presented model assumptions.

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiaoting Zhang ◽  
Bingyi Zhang

In this study, an analytical model is established to efficiently compute the magnetic field and unbalanced magnetic pull (UMP) in axial-flux permanent-magnet motors (AFPMMs). The effects of stator slotting, end effect, and rotor eccentricity on the magnetic field and forces were investigated. Static and dynamic eccentricities are analyzed and considered in the model. An effective function of the air gap permeance was introduced for effect of the stator slots to compute the flux density. A specific coefficient function is defined to calculate the end effect. A Fourier transform is used to compute the variations of the permanent-magnet remanence and the air gap permeance due to the slotted stator opposite to a slotless stator. The unbalanced magnetic forces were evaluated as a function of the air gap magnetic field using analytical equations. The proposed analytical method dramatically reduces the model size and computational time. It can be applied to the analysis of AFPMMs and is much faster than the three-dimensional finite element method (FEM). By comparing with the obtained using the FEM, the model results are validated.


2016 ◽  
Vol 65 (3) ◽  
pp. 601-611 ◽  
Author(s):  
Rafał M. Wojciechowski

Abstract In the paper, methodologies for the magnetic field simulation in an axial flux permanent magnet coreless (AFPMC) motor have been proposed and discussed. Two approaches have been considered and investigated, both based on representing the 3D field distribution by superimposing axisymmetric 2D patterns. The first of studied approaches applies directly to the Biot-Savart law while the second uses a 2D axisymmetric finite element method. The selected results of magnetic field distributions and electromagnetic torque characteristics for the considered AFPMC motor have been presented and compared with results obtained using the commercial FEM package ‘Maxwell’. The elaborated algorithms have been incorporated into the design routines allowing multi-parameter optimisation of the considered motor construction.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2522
Author(s):  
Guangdou Liu ◽  
Shiqin Hou ◽  
Xingping Xu ◽  
Wensheng Xiao

In the linear and planar motors, the 1D Halbach magnet array is extensively used. The sinusoidal property of the magnetic field deteriorates by analyzing the magnetic field at a small air gap. Therefore, a new 1D Halbach magnet array is proposed, in which the permanent magnet with a curved surface is applied. Based on the superposition of principle and Fourier series, the magnetic flux density distribution is derived. The optimized curved surface is obtained and fitted by a polynomial. The sinusoidal magnetic field is verified by comparing it with the magnetic flux density of the finite element model. Through the analysis of different dimensions of the permanent magnet array, the optimization result has good applicability. The force ripple can be significantly reduced by the new magnet array. The effect on the mass and air gap is investigated compared with a conventional magnet array with rectangular permanent magnets. In conclusion, the new magnet array design has the scalability to be extended to various sizes of motor and is especially suitable for small air gap applications.


Sign in / Sign up

Export Citation Format

Share Document