scholarly journals Feasibility for Damage Identification in Offshore Wind Jacket Structures through Monitoring of Global Structural Dynamics

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5791
Author(s):  
Mark Richmond ◽  
Ursula Smolka ◽  
Athanasios Kolios

The modal response of a four-legged jacket structure to damages are explored and resulting considerations for damage detection are discussed. A finite element model of the Wikinger (Iberdrola) jacket structure is used to investigate damage detection. Damages, such as cracks, scour, corrosion and more, are modelled in a simulation environment. The resulting modal parameters are calculated, these parameters are compared to those from an unaltered structure and metrics are calculated including frequency change, modal assurance criterion and modal flexibility. A highly detailed design-model is used to conduct a sensitivity study on modal parameters for a range of changes. By conducting this on the same structure, this acts as a useful reference for those interested in the dynamic response of offshore wind jacket structures. Additionally, this paper addresses the issue of changes in mode parameters resulting from turbine yaw. This paper also considers the challenge of mode-swapping in semi-symmetric structures and proposes several approaches for addressing this. Damage typically results in a reduction of frequency and change in mode shapes, but in ways which can be distinguished from other structural changes, given the extent of this model. These findings are important considerations for modal-based damage detection of offshore wind support structures.

Author(s):  
M. Richmond ◽  
S. Siedler ◽  
M. Häckell ◽  
U. Smolka ◽  
A. Kolios

Abstract The modal parameters extracted from a structure by accelerometers can be used for damage assessment as well as model updating. To extract modal parameters from a structure, it is important to place accelerometers at locations with high modal displacements. Sensor placement can be restricted by practical considerations, and installation might be conducted more based on engineering judgement rather than analysis. This leads to the question of how important the optimal sensor placement is, and if fewer sensors suffice to extract the modal parameters. In this work, an offshore wind substation (OSS) from the Wikinger offshore wind farm (owned by Iberdrola) is instrumented with 12, 3-axis accelerometers. This sensor setup consists of 6 sensors in a permanent campaign where sensors were placed based purely on engineering judgement, as well as 6 sensors in a temporary campaign, placed based on a placement analysis. An optimal sensor placement study was conducted using a finite element model of the structure in the software package FEMtools, resulting in optimal layouts. The temporary campaign sensors were placed such that they, in combination with the permanent campaign, can be used to complete the proposed layouts. Samples for each setup are processed using the software ARTeMIS modal to extract the mode shapes and natural frequencies through the Stochastic Subspace Identification (SSI) technique. The frequencies found by this approach are then clustered together using a k-means algorithm for a comparison within clusters. The modal assurance criterion (MAC) values are calculated for each result and compared to the finite element model from which the optimal sensor placement study was conducted. This is to match mode shapes between the two and thus determine the importance of off diagonal MAC elements in the sensor optimization process. MAC values are also calculated relative to a cluster-averaged set of eigenvectors to determine how they vary over the 1.5 months. The results show that for all sensor layouts, the three lower frequency modes are consistently identified. The most optimized sensor layout, consisting of only 3 sensors, was able to distinguish an additional, higher frequency mode which was never identified in the 6-sensor permanent layout. However, the reduced sensor layout shows slightly more scatter in the results than the 6-sensor layout. There is a higher signal to noise ratio in the temporary campaign which results in scatter. We conclude that with an optimized placement of accelerometers, more modes can be identified and distinguished. However, off diagonal elements in the original MAC matrix, as well as loss of sensor degrees of freedom, can result in additional scatter in the measurements. Some of these findings can be extended to other offshore jacket structures, such as those of wind turbines, in that it gives a better understanding of the consequence of an optimal sensor placement study.


Author(s):  
Wen-Yu He ◽  
Wei-Xin Ren ◽  
Lei Cao ◽  
Quan Wang

The deflection of the beam estimated from modal flexibility matrix (MFM) indirectly is used in structural damage detection due to the fact that deflection is less sensitive to experimental noise than the element in MFM. However, the requirement for mass-normalized mode shapes (MMSs) with a high spatial resolution and the difficulty in damage quantification restricts the practicability of MFM-based deflection damage detection. A damage detection method using the deflections estimated from MFM is proposed for beam structures. The MMSs of beams are identified by using a parked vehicle. The MFM is then formulated to estimate the positive-bending-inspection-load (PBIL) caused deflection. The change of deflection curvature (CDC) is defined as a damage index to localize damage. The relationship between the damage severity and the deflection curvatures is further investigated and a damage quantification approach is proposed accordingly. Numerical and experimental examples indicated that the presented approach can detect damages with adequate accuracy at the cost of limited number of sensors. No finite element model (FEM) is required during the whole detection process.


Author(s):  
K. Lai ◽  
X. Sun ◽  
C. Dasch

Resonance inspection uses the natural acoustic resonances of a part to identify anomalous parts. Modern instrumentation can measure the many resonant frequencies rapidly and accurately. Sophisticated sorting algorithms trained on sets of good and anomalous parts can rapidly and reliably inspect and sort parts. This paper aims at using finite-element-based modal analysis to put resonance inspection on a more quantitative basis. A production-level automotive steering knuckle is used as the example part for our study. First, the resonance frequency spectra for the knuckle are measured with two different experimental techniques. Next, scanning laser vibrometry is used to determine the mode shape corresponding to each resonance. The material properties including anisotropy are next measured to high accuracy using resonance spectroscopy on cuboids cut from the part. Then, finite element model (FEM) of the knuckle is generated by meshing the actual part geometry obtained with computed tomography (CT). The resonance frequencies and mode shapes are next predicted with a natural frequency extraction analysis after extensive mesh size sensitivity study. The good comparison between the predicted and the experimentally measured resonance spectra indicate that finite-element-based modal analyses have the potential to be a powerful tool in shortening the training process and improving the accuracy of the resonance inspection process for a complex, production level part. The finite element based analysis can also provide a means to computationally test the sensitivity of the frequencies to various possible defects such as porosity or oxide inclusions especially in the high stress regions that the part will experience in service.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Ziemowit Dworakowski ◽  
Kajetan Dziedziech ◽  
Pawel Zdziebko ◽  
Krzysztof Mendrok

This paper presents the use of laser vibrometer measurements to detect and locate damage in a metal plate. An algorithm based on local spatial filters was selected, and for the purpose of comparison, the fault location was also determined based on the wavelet analysis of mode shapes. The research was carried out first on the created finite element model of aluminum plate, where two kinds of damage of increasing size and temperature change were simulated. After obtaining positive results, a laboratory experiment was carried out, which consisted of measuring the vibration of the aluminum plate with the laser vibrometer in undamaged condition, at increased temperatures, and with various damage scenarios. The conclusions of the laboratory experiment confirm the damage detection capabilities of the methods but question their damage localization potential.


2019 ◽  
Vol 19 (1) ◽  
pp. 322-336 ◽  
Author(s):  
Yongfeng Xu

Research works on photogrammetry have received tremendous attention in the past few decades. One advantage of photogrammetry is that it can measure displacement and deformation of a structure in a fully non-contact, full-field manner. As a non-destructive evaluation method, photogrammetry can be used to detect structural damage by identifying local anomalies in measured deformation of a structure. Numerous methods have been proposed to measure deformations by tracking exterior features of structures, assuming that the features can be consistently identified and tracked on sequences of digital images captured by cameras. Such feature-tracking methods can fail if the features do not exist on captured images. One feasible solution to the potential failure is to artificially add exterior features to structures. However, painting and mounting such features can introduce unwanted permanent surficial modifications, mass loads, and stiffness changes to structures. In this article, a photogrammetry-based structural damage detection method is developed, where a visible laser line is projected to a surface of a structure, serving as an exterior feature to be tracked; the projected laser line is massless and its existence is temporary. A laser-line-tracking technique is proposed to track the projected laser line on captured digital images. Modal parameters of a target line corresponding to the projected laser line can be estimated by conducting experimental modal analysis. By identifying anomalies in curvature mode shapes of the target line and mapping the anomalies to the projected laser line, structural damage can be detected with identified positions and sizes. An experimental investigation of the damage detection method was conducted on a damaged beam. Modal parameters of a target line corresponding to a projected laser line were estimated, which compared well with those from a finite element model of the damaged beam. Experimental damage detection results were validated by numerical ones from the finite element model.


Author(s):  
Wei Chen ◽  
Mengshi Jin ◽  
Hanwen Song

The phase resonance testing is widely used in the ground vibration test for aircraft due to the advantages of distinguishing closely spaced modes and directly comparing normal mode shapes with those from finite element model. However, the process to configure the shakers is time-consuming. A method to configure the shakers, which calculates the appropriate force vector and estimates the optimal combination of excitation locations for phase resonance testing, is proposed in this paper. Compared with other configuration methods, where the frequency response function matrix is known a priori, the proposed method only requires a priori information of rough modal parameters. Therefore, less information is used in this method, which leads to the advantage of calculating the optimal configuration more efficiently. In this method, the modal force amplitude ratio of the target mode to all the modes, called the modal ratio indicator, is set up as the criterion to select the optimal configuration. Simulations of a discrete plate are performed to show the process of the method. An experiment of a steel beam is conducted to validate the effectiveness and reliability of this method.


Author(s):  
Ivan Duvnjak ◽  
Domagoj Damjanović ◽  
Natalia Sabourova ◽  
Niklas Grip ◽  
Ulf Ohlsson ◽  
...  

<p>Damage assessment of structures includes estimation of location and severity of damage. Quite often it is done by using changes of dynamic properties, such as natural frequencies, mode shapes and damping ratios, determined on undamaged and damaged structures. The basic principle is to use dynamic properties of a structure as indicators of any change of its stiffness and/or mass. In this paper, two new methods for damage detection are presented and compared. The first method is based on comparison of normalised modal shape vectors determined before and after damage. The second method uses so-called &#119897;l-norm regularized finite element model updating. Some important properties of these methods are demonstrated using simulations on a Kirchhoff plate. The pros and cons of the two methods are discussed. Unique aspects of the methods are highlighted.</p>


Author(s):  
Loukas Papadopoulos ◽  
Ephrahim Garcia

Abstract A method is proposed for probabilistically model updating an initial deterministic finite element model using measured statistical changes in natural frequencies and mode shapes (i.e., modal parameters). The approach accounts for variations in the modal properties of a structure (due to experimental errors in the test procedure). A perturbation of the eigenvalue problem is performed to yield the relationship between the changes in eigenvalues and in the global stiffness matrix. This stiffness change is represented as a sum over every structural member by a product of a stiffness reduction factor and a stiffness submatrix. Monte Carlo simulations, in conjunction with the variations of the structural modal parameters, are used to determine the variations of the stiffness reduction factors. These values will subsequently be used to estimate statistics for the corrected stiffness parameters. The effectiveness of the proposed technique is illustrated using simulated data on an aluminum cantilever Euler-Bernoulli beam.


2006 ◽  
Vol 3-4 ◽  
pp. 309-314 ◽  
Author(s):  
Irina Trendafilova

This study investigates the possibilities for damage detection and location using the vibration response of an aircraft wing. A simplified finite element model of an aircraft wing is used to model its vibration response. The model is subjected to modal analysis- its natural frequencies are estimated and the mode shapes are determined. Two types of damage are considered - localised and distributed. The wing model is divided into a number of volumes. The goal of the study is to investigate the possibility to use the vibration response of an aircraft wing and especially its modal characteristics for the purposes of damage detection. So we’ll be trying to find suitable features, which can be used to detect damage and restrict it to one of the introduced volumes. The sensitivity of the modal frequencies of the model to damage in different locations is studied. Some general trends in the behaviour of these frequencies with change of the damage location are investigated. The utilization of the modal frequencies for detecting damage in a certain part of the wing is discussed


2019 ◽  
Vol 272 ◽  
pp. 01010
Author(s):  
Jian WANG ◽  
Huan JIN ◽  
Xiao MA ◽  
Bin ZHAO ◽  
Zhi YANG ◽  
...  

Frequency Change Ratio (FCR) based damage detection methodology for structural health monitoring (SHM) is analyzed in detail. The effectiveness of damage localization using FCR for some slight damage cases and worse ones are studied on an asymmetric planar truss numerically. Disadvantages of damage detection using FCR in practical application are found and the reasons for the cases are discussed. To conquer the disadvantages of FCR, an Improved Frequency Change Ratio (IFCR) based damage detection method which takes the changes of mode shapes into account is proposed. Verification is done in some damage cases and the results reveal that IFCR can identify the damage more efficiently. Noisy cases are considered to assess the robustness of IFCR and results indicate that the proposed method can work well when the noise is not severe.


Sign in / Sign up

Export Citation Format

Share Document