scholarly journals Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 394
Author(s):  
Liliana Rusu ◽  
Eugen Rusu

There is an increasing necessity in reducing CO2 emissions and implementing clean energy technologies, and over the years the marine environment has shown a huge potential in terms of renewable energy. From this perspective, extracting marine renewable energy represents one of the most important technological challenges of the 21st century. In this context, the objective of the present work is to provide a new and comprehensive understanding concerning the global wave energy resources based on the most recent results coming from two different databases, ERA5 and the European Space Agency Climate Change Initiative for Sea State. In this study, an analysis was first made based only on the ERA5 data and concerns the 30-year period of 1989–2018. The mean wave power, defined as the energy flux per unit of wave-crest length, was evaluated at this step. Besides the spatial distribution of this parameter, its seasonal, inter, and mean annual variability was also assessed on a global scale. As a second step, the mean wave energy density per unit horizontal area was analyzed for a 27-year period (1992–2018) with both ERA5 and the satellite data from the European Space Agency being considered. The comparison indicates a relatively good concordance between the results provided by the two databases in terms of mean wave energy density, although the satellite data indicate slightly higher energy values.

2014 ◽  
Vol 66 (2) ◽  
Author(s):  
Jaswar Jaswar ◽  
C. L. Siow ◽  
A. Maimun ◽  
C. Guedes Soares

Malaysian government introduced Small Renewable Energy Power (SREP) Program such as biomass, biogas, and municipal solid waste, solar photovoltaic and mini-hydroelectric facilities in 2001. In year 2010, the energy generated by biomass was achieved 18 MW and mini hydro also successes to generate around 23 MW. Green Technology and Water Malaysia are targeted by Ministry of Energy to achieve cumulative renewable energy capacity around 2080 MW at year 2020 and 21.4 GW at year 2050. This paper discusses the possibility to utilize ocean wave in Merang shore, Terengganu, Malaysia. The literature reviewed available technologies used to convert wave energy to electricity which are developing currently. The available technologies reviewed here are attenuator, overtopper, point absorbers, oscillating wave surge converter and oscillating water column. The work principle of the device was covered. Finally, the sea condition in Malaysia also studied to analyze the possibility to utilize the wave energy by using the available technologies. It is found that the mean wave height is 0.95 meter and the mean wave period is 3.5 second in the Merang shore, Terengganu, Malaysia. Attenuator type wave converter developed by Wave Star is considered as one of the possible devices to be installed at the location. From the calculation, it is obtained that the total rate electrical power possible to grid is 649 MWh a year if only one set of C5 Wave star device is installed on Merang shore, Terengganu.


Author(s):  
Quan-Ming Miao ◽  
Allen T. Chwang

The reflection and transmission of ship waves by vertical floating barriers located on both sides of a fairway are investigated by the modified Dawson’s method in this paper. The free surface is specially treated to take into account the floating barriers. The wave pattern and the wave energy density between and outside the barriers are obtained. It is found that the reflection and transmission performance of a barrier is associated with its width and height. For a wider or higher barrier, more ship waves are reflected by it. A vertical floating barrier with a reasonable width and height can reduce ship waves in the outer region very efficiently.


2017 ◽  
Vol 50 (3) ◽  
pp. 1693 ◽  
Author(s):  
I. Ilia ◽  
C. Loupasakis ◽  
P. Tsangaratos

The main objective of the present study was to investigate ground subsidence in the wider area of Farsala, western Thessaly basin, by means of remote sensing techniques and to identify potential geo environmental mechanisms that contribute to the development of the observed surface fractures affecting the site. In this context, a set of Synthetic Aperture Radar (SAR) images, acquired in 1995-2003 by the European Space Agency (ESA) satellites ERS1 and ERS2 and processed with the Persistent Scatterer Interferometry (PSI) technique by the German Space Agency (DLR) during the Terrafirma project, were evaluated in order to investigate spatial and temporal patterns of deformation. Groundwater table levels of three water boreholes within the research area were processed providing the mean piezometric level drawdown and the mean annual drawdown rate. In addition, a quantitative comparison between the deformation subsidence rate and the thickness of the compressible sediments was also performed. The outcomes of the present study indicated a clear relationship in the subsidence deformation rate and the groundwater fluctuation and also a correlation between the depth of the bedrock and the deformation subsidence rate. Overall, the multitemporal SAR interferometry (DInSAR) data are proved as a valuable and suitable technique for increasing knowledge about the extent and the rate of the deformations in the current study area, proved to be affected with an increasing intensity. 


2019 ◽  
Vol 85 (1) ◽  
Author(s):  
Vasily I. Erofeev

The concept of informativeness of nonlinear plasma physics scenarios is explained. Natural ideas of developing highly informative models of plasma kinetics are spelled out. They are applied to develop a formula that governs the drift of long Langmuir waves in spatial positions and wave vectors in a magnetized plasma due to the plasma inhomogeneity. Together with previous findings (Erofeev, Phys. Plasmas, vol. 22, 2015, 092302), the formula evidences the need for an intelligent generalization of the notion of wave energy density from usual homogeneous plasmas to inhomogeneous ones.


2007 ◽  
Vol 25 (10) ◽  
pp. 2139-2145 ◽  
Author(s):  
R. J. Sica ◽  
P. S. Argall

Abstract. The Purple Crow Lidar (PCL) is a large power-aperture product monostatic Rayleigh-Raman-Sodium-resonance-fluorescence lidar, which has been in operation at the Delaware Observatory (42.9° N, 81.4° W, 237 m elevation) near the campus of The University of Western Ontario since 1992. Kinetic-energy density has been calculated from the Rayleigh-scatter system measurements of density fluctuations at temporal-spatial scales relevant for gravity waves, e.g. soundings at 288 m height resolution and 9 min temporal resolution in the upper stratosphere and mesosphere. The seasonal averages from 10 years of measurements show in all seasons some loss of gravity-wave energy in the upper stratosphere. During the equinox periods and summer the measurements are consistent with gravity waves growing in height with little saturation, in agreement with the classic picture of the variations in the height at which gravity waves break given by Lindzen (1981). The mean values compare favourably to previous measurements when computed as nightly averages, but the high temporal-spatial resolution measurements show considerable day-to-day variability. The variability over a night is often extremely large, with typical RMS fluctuations of 50 to 100% at all heights and seasons common. These measurements imply that using a daily or nightly-averaged gravity-wave energy density in numerical models may be highly unrealistic.


Sign in / Sign up

Export Citation Format

Share Document