scholarly journals A Combined Experimental and Numerical Characterization of the Flowfield and Heat Transfer around a Multiperforated Plate with Compound Angle Injection

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 613
Author(s):  
Emmanuel Laroche ◽  
David Donjat ◽  
Philippe Reulet

The aerodynamic and thermal behaviour of multiperforated zones in combustors is essential to the development of future combustion chambers. Detailed databases are therefore crucial for the validation of RANS/LES solvers, but also regarding the derivation of heat transfer correlations used in 0D/1D in-house codes developed by engine manufacturers. In the framework of FP7 EU SOPRANO Program, the test-rig used in a previous study is modified to be compatible with anisothermal conditions. The plate studied is a 12:1 model with a 90∘ compound angle injection. A heating system is used to generate a moderate temperature gradient of about 20 K between the secondary hot flow and the main cold flow. The aerodynamic field is acquired by a PIV 2D-3C (Stereo Particle Image Velocimetry) system. The surface heat transfer coefficient is derived based on surface temperature distribution acquisitions. Several heating power levels are tested, which allows evaluating the convective heat transfer coefficient and reference temperature through a linear regression. Measurements are conducted on both sides of the plate, which also gives access to those quantities on the injection/suction sides. From a numerical point of view, the configuration is studied using the unstructured ONERA in-house CEDRE solver with an advanced Reynolds Stress Model. A systematic comparison is presented between the experimental and numerical database. Due to the high blowing ratio, the film protection is low in the first rows, with a convective heat transfer coefficient enhancement around three, and freestream cold air brought close to the wall by vortices created at injection. After four rows, the film is building up, leading gradually to a better insulation of the wall. The comparison with the numerical simulation exhibits a qualitative agreement on the main flow structures. However, the mixing between the jets, the film and the freestream is underestimated by the calculation.

Author(s):  
Emmanuel Laroche ◽  
David Donjat ◽  
Philippe Reulet

Abstract The aerodynamic and thermal behaviour of multiperforated zones in combustors is essential to the development of future combustion chambers. Detailed databases are therefore essential for the validation of RANS/LES solvers, but also regarding the derivation of heat transfer correlations used in 0D/1D in-house codes developed by engine manufacturers. In the framework of FP7 EU SOPRANO Program, the test-rig used in a previous study is modified to be compatible with anisothermal conditions. The plate studied is a 12:1 model with a 90° compound angle injection. A heating system is used to generate a moderate temperature gradient of about 20 K between the secondary hot flow and the main cold flow. The aerodynamic field is acquired by a PIV 2D-3C (Particle Image Velocimetry) system. The surface heat transfer coefficient is derived based on surface temperature distribution acquisitions. Several heating power levels are tested, which allows to evaluate the convective heat transfer coefficient and reference temperature through a linear regression. Measurements are conducted on both sides of the plate, which also gives access to those quantities on the injection/suction sides. From a numerical point of view, the configuration is studied using the unstructured ONERA in-house CEDRE solver. A systematic comparison is presented between the experimental and numerical database.


Sign in / Sign up

Export Citation Format

Share Document