scholarly journals Prediction of Extreme Wind Speed for Offshore Wind Farms Considering Parametrization of Surface Roughness

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1033
Author(s):  
Xinwen Ma ◽  
Yan Chen ◽  
Wenwu Yi ◽  
Zedong Wang

Large-scale offshore wind farms (OWF) are under construction along the southeastern coast of China, an area with a high typhoon incidence. Measured data and typhoon simulation model are used to improve the reliability of extreme wind speed (EWS) forecasts for OWF affected by typhoons in this paper. Firstly, a 70-year historical typhoon record database is statistically analyzed to fit the typhoon parameters probability distribution functions, which is used to sample key parameters when employing Monte Carlo Simulation (MCS). The sampled typhoon parameters are put into the Yan Meng (YM) wind field to generate massive virtual typhoon in the MCS. Secondly, when typhoon simulation carried out, the change in wind field roughness caused by the wind-wave coupling is studied. A simplified calculation method for realizing this phenomenon is applied by exchanging roughness length in the parametric wind field and wave model. Finally, the extreme value theory is adopted to analyze the simulated typhoon wind data, and results are verified using measured data and relevant standards codes. The EWS with 50-year recurrence of six representative OWF is predicted as application examples. The results show that the offshore EWS is generally stronger than onshore; the reason is sea surface roughness will not keep growing accordingly as the wind speed increases. The traditional prediction method does not consider this phenomenon, causing it to overestimate the sea surface roughness, and as a result, underestimate the EWS for OWF affected by typhoons. This paper’s methods make the prediction of EWS for OWF more precise, and results suggest the planer should choose stronger wind turbine in typhoon prone areas.

2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Xiaoyong Li ◽  
Kaijun Ren ◽  
Hongze Leng

A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.


2012 ◽  
Vol 610-613 ◽  
pp. 2751-2755
Author(s):  
Yu Ping Pan ◽  
Su Fang Ge ◽  
Wen Yu Sha

The data, originated from the RASEX experiment and the Surface Wave Dynamics Experiment. RASEX experiment took place at an offshore wind turbine site in the Baltic Sea in 1994, it is representative of the fetch-limited conditions; SWADE experiment was carried out off the Atlantic coast of the United States in 1990, it is representative of the wind-sea/swell conditions. Both datasets are used to test sea surface roughness schemes by using bulk algorithm. The aim of this study is to better understand the sensitively of the surface momentum fluxes to choice of surface roughness parameterization and the range of applicability of the four schemes (YT96, TY01, O02, and GW06). It was found YT96, TY01 and GW06 schemes generated friction velocity, drag coefficient and wind stress in good agreement with the direct measurements under different wind sea conditions, but O02 scheme overestimate them with the wind speed larger than 8ms-1 for the fetch-limited conditions.


Formulation of the problem. Ukraine's energy sector is import-dependent, and one of the country’s sustainable development goals until 2030 is to ensure access to affordable, reliable, sustainable and modern energy sources. The wind potential of the mainland of our country has been thoroughly studied, so the focus of our interest is water areas, which are promising for the development of offshore wind energy. Offshore wind farms in Ukraine could improve the environmental situation and considerably contribute to the decarbonization of domestic energy. That is why the study considers the opportunity of offshore wind farms installation in the Sea of Azov. Methods. The analysis of literary and cartographic sources has been carried out. Mathematical methods have been used to calculate energy indicators. Using geoinformation modeling, taking into account limiting factors, suitable for the installation of offshore wind farms areas have been identified in the Sea of Azov. The purpose of the article is to geographically analyze the wind energy potential of the Sea of Azov with further assessment of the suitability of areas for the offshore wind farms location. Results. Our research has shown that the installation of offshore wind farms is appropriate in the Sea of Azov, because many areas are characterized by average annual wind speed above 6 meters per second. The most promising areas are the northern and northeastern coasts, where wind speed at different altitudes ranges from 8 to 9.3 meters per second. At altitudes of 50, 100 and 200 m, under the action of limiting factors, the most promising for offshore wind turbines areas are reduced by 8–22%. As considered limiting factors (territorial waters, nature protection objects, settlements and airports) have identical influence regardless of height, it is more effective to install wind turbines with a tower height of more than 100 m in the waters of the Sea of Azov. Interdisciplinary research is needed for the final answer on the effectiveness of offshore wind turbines in the Sea of Azov. Scientific novelty and practical significance. The results of the analysis of the wind energy potential of the Sea of Azov have been given, the tendency of its growth from the west to the east has been revealed. Attention has been paid to the method of geoinformation modeling of the location of offshore wind farms taking into account limiting factors. Maps of wind speed, potential of electricity generated by a single wind turbine and suitability of areas of the Sea of Azov for the location of offshore wind farms at an altitude of 200 m above sea level have been presented. These data can be used by designers of wind energy facilities as a basis for determining the optimal power of wind turbines and the type of energy for a particular area of the Sea of Azov.


2016 ◽  
Vol 13 ◽  
pp. 107-112 ◽  
Author(s):  
Anika Obermann ◽  
Benedikt Edelmann ◽  
Bodo Ahrens

Abstract. The Mistral and Tramontane are mesoscale winds in southern France and above the Western Mediterranean Sea. They are phenomena well suited for studying channeling effects as well as atmosphere–land/ocean processes. This sensitivity study deals with the influence of the sea surface roughness length parameterizations on simulated Mistral and Tramontane wind speed and wind direction. Several simulations with the regional climate model COSMO-CLM were performed for the year 2005 with varying values for the Charnock parameter α. Above the western Mediterranean area, the simulated wind speed and wind direction pattern on Mistral days changes depending on the parameterization used. Higher values of α lead to lower simulated wind speeds. In areas, where the simulated wind speed does not change much, a counterclockwise rotation of the simulated wind direction is observed.


2019 ◽  
Vol 252 ◽  
pp. 113419 ◽  
Author(s):  
Esteve Borràs Mora ◽  
James Spelling ◽  
Adriaan H. van der Weijde ◽  
Ellen-Mary Pavageau

Wind Energy ◽  
2006 ◽  
Vol 9 (1-2) ◽  
pp. 39-53 ◽  
Author(s):  
Sten Frandsen ◽  
Rebecca Barthelmie ◽  
Sara Pryor ◽  
Ole Rathmann ◽  
Søren Larsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document