scholarly journals Application of a New Dispatch Methodology to Identify the Influence of Inertia Supplying Wind Turbines on Day-Ahead Market Sales Volumes

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1255
Author(s):  
Henning Thiesen ◽  
Clemens Jauch

Power system inertia is an essential part of grid frequency control. The number of synchronously connected machines, which inherently provide inertia, is decreasing due to the transition to renewable energies. Conventional generation units are being replaced by renewable generation units which are connected to the grid via frequency converters. Some power systems already suffer from too little power system inertia. Hence, inertia is a valuable yet non-traded commodity. A day-ahead dispatch methodology to secure power system inertia was developed and is applied and assessed in this work. Day-ahead market data of the combined market of the Republic of Ireland and Northern Ireland is used. If the superimposition of sell and buy bids results in insufficient inertia, the dispatch algorithm is applied. In decreasing price order, non-inertia-providing sell bids get replaced by the following sell bids in the merit order. The iterative process is repeated until sufficient inertia is in the system. The provision of synthetic inertia by wind turbines is considered in the process. The costs for additional stored kinetic energy for the assessed time periods and scenarios result in costs ranging from 1.02 to 4.49 EUR/kgm2.

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 901 ◽  
Author(s):  
Guillermo Martínez-Lucas ◽  
José Ignacio Sarasúa ◽  
Juan Ignacio Pérez-Díaz ◽  
Sergio Martínez ◽  
Danny Ochoa

With high levels of wind energy penetration, the frequency response of isolated power systems is more likely to be affected in the event of a sudden frequency disturbance or fluctuating wind conditions. In order to minimize excessive frequency deviations, several techniques and control strategies involving Variable Speed Wind Turbines (VSWTs) have been investigated in isolated power systems. In this paper, the main benefits and disadvantages of introducing VSWTs—both their inertial contribution and primary frequency regulation—in an exclusively renewable isolated power system have been analyzed. Special attention has been paid to the influence of the delays of control signals in the wind farm when VSWTs provide primary regulation as well as to the wind power reserve value which is needed. To achieve this objective, a methodology has been proposed and applied to a case study: El Hierro power system. A mathematical dynamic model of the isolated power system, including exclusively renewable technologies, has been described. Representative generation schedules and wind speed signals have been fixed according to the observed system. Finally, in order to obtain conclusions, realistic system events such as fluctuations in wind speed and the outage of the generation unit with the higher assigned power in the power system have been simulated.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3660
Author(s):  
Danny Ochoa ◽  
Sergio Martinez

The significant presence of variable-speed wind turbines in worldwide power systems has led to planners and grid operators requiring them to participate in frequency control tasks. To address this demand, a large number of wind frequency control proposals have been reported in the literature in recent years. Many of these solutions have been tested by specific experiments carried out in computer simulation environments. This paper proposes a methodology to evaluate the effects of enabling frequency support by wind turbines on the magnitudes that characterize the inertial response of a power system by using an analytical approach. The derived formulation and the illustrations are designed to provide a better understanding of both the mechanisms that determine the frequency stability indices and the improvement achieved by enabling the inertial response of wind turbines by implementing a virtual inertia-based method on the active power controllers of these machines. To facilitate the comprehension of the results obtained, the analytical approach is complemented with time-domain simulations in a predefined test system implemented in MATLAB/Simulink®. The proposed methodology achieves a generalization of the results and can be used for the assessment of any power system configuration.


Author(s):  
Clemens Jauch ◽  
Arne Gloe

This paper presents findings of a study on continuous feed-in management and continuous synthetic inertia contribution with wind turbines. A realistic case study, based on real measurements, is outlined. A wind turbine feeds into a weak feeder, such that its power has to be adapted to the permissible loading of this feeder. At the same time the wind turbine is to provide inertia to the grid by applying the previously published variable inertia constant controller. It is discussed that optimal grid utilisation and simultaneous inertia contribution are mandatory for the frequency control in power systems that are heavily penetrated with renewable energies. The study shows that continuous feed-in management can be combined well with continuous inertia provision. There are hardly any negative consequences for the wind turbine. The benefits for the grid are convincing, both in terms of increased system utilisation and in terms of provided inertia. It is concluded that wind turbines can enhance angular stability in a power system to a larger extent than conventional power plants.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1379
Author(s):  
Md Ruhul Amin ◽  
Michael Negnevitsky ◽  
Evan Franklin ◽  
Kazi Saiful Alam ◽  
Seyed Behzad Naderi

In power systems, high renewable energy penetration generally results in conventional synchronous generators being displaced. Hence, the power system inertia reduces, thus causing a larger frequency deviation when an imbalance between load and generation occurs, and thus potential system instability. The problem associated with this increase in the system’s dynamic response can be addressed by various means, for example, flywheels, supercapacitors, and battery energy storage systems (BESSs). This paper investigates the application of BESSs for primary frequency control in power systems with very high penetration of renewable energy, and consequently, low levels of synchronous generation. By re-creating a major Australian power system separation event and then subsequently simulating the event under low inertia conditions but with BESSs providing frequency support, it has been demonstrated that a droop-controlled BESS can greatly improve frequency response, producing both faster reaction and smaller frequency deviation. Furthermore, it is shown via detailed investigation how factors such as available battery capacity and droop coefficient impact the system frequency response characteristics, providing guidance on how best to mitigate the impact of future synchronous generator retirements. It is intended that this analysis could be beneficial in determining the optimal BESS capacity and droop value to manage the potential frequency stability risks for a future power system with high renewable energy penetrations.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Anh-Tuan Tran ◽  
Bui Le Ngoc Minh ◽  
Phong Thanh Tran ◽  
Van Van Huynh ◽  
Van-Duc Phan ◽  
...  

Nowadays, the power systems are getting more and more complicated because of the delays introduced by the communication networks. The existence of the delays usually leads to the degradation and/or instability of power system performance. On account of this point, the traditional load frequency control (LFC) approach for power system sketches a destabilizing impact and an unacceptable system performance. Therefore, this paper proposes a new LFC based on adaptive integral second-order sliding mode control (AISOSMC) approach for the large-scale power system with communication delays (LSPSwCD). First, a new linear matrix inequality is derived to ensure the stability of whole power systems using Lyapunov stability theory. Second, an AISOSMC law is designed to ensure the finite time reachability of the system states. To the best of our knowledge, this is the first time the AISOSMC is designed for LFC of the LSPSwCD. In addition, the report of testing results presents that the suggested LFC based on AISOSMC can not only decrease effectively the frequency variation but also make successfully less in mount of power oscillation/fluctuation in tie-line exchange.


2018 ◽  
Vol 8 (2) ◽  
pp. 2633-2639 ◽  
Author(s):  
K. Soleimani ◽  
J. Mazloum

Power systems include multiple units linked together to produce constantly moving electric power flux. Stability is very important in power systems, so controller systems should be implemented in power plants to ensure power system stability either in normal conditions or after the events of unwanted inputs and disorder. Frequency and active power control are more important regarding stability. Our effort focused on designing and implementing robust PID and PI controllers based on genetic algorithm by changing the reference of generating units for faster damping of frequency oscillations. Implementation results are examined on two-area power system in the ideally state and in the case of parameter deviation. According to the results, the proposed controllers are resistant to deviation of power system parameters and governor uncertainties.


Author(s):  
Semaria Ruiz ◽  
Julian Patiño ◽  
Jairo Espinosa

<pre>The increasing use of renewable technologies such as wind turbines in power systems may require the contribution of these new sources into grid ancillary services, such as Load Frequency Control. Hence, this work dealt with the performance comparison of two traditional control structures, PI and <span>LQR</span>, for secondary regulation of Load Frequency Control with the participation of variable-speed wind turbines. For this purpose, the doubly-fed induction generator wind turbine was modeled with additional control loops for emulation of the inertial response of conventional machines for frequency regulation tasks. Performance of proposed strategies was verified through simulation in a benchmark adapted from the <span>WSCC</span> 3 machines 9-bus test system. Results showed overall superior performance for <span>LQR</span> controller, although requiring more strenuous control effort from conventional units than PI control.</pre>


Sign in / Sign up

Export Citation Format

Share Document