scholarly journals Sodium Tungsten Oxide Bronze Nanowires Bundles in Adsorption of Methylene Blue Dye under UV and Visible Light Exposure

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1322
Author(s):  
Kunyapat Thummavichai ◽  
Le Anh Thi ◽  
Swee-Yong Pung ◽  
Oluwafunmilola Ola ◽  
Mian Zahid Hussain ◽  
...  

This paper describes the analysis and characterization of NayWOx bronze nanowires bundles and evaluation of their effective adsorption of methylene blue dye (MB). The Na-doped WOx bronze nanowires bundles were first synthesized via a simple solvothermal method, which were then fully characterized by using different techniques including TEM, XRD, XPS and UV-Vis, to validate the successful Na+ insertion into the WOx framework. The adsorption activities of the resulting NayWOx bronze nanowires bundles, compared with the undoped WOx form, were investigated by evaluating the adsorption effect on methylene blue under both UV and visible light irradiations. An enhanced adsorption performance of the Na-doped WOx bronze samples was recorded, which demonstrated a 90% of removal efficiency of the MB under different conditions (dark, visible and UV light). Moreover, the NayWOx bronze samples also offered a 4 times better kinetic rate of MB removal than the plain WOx nanowires.

2018 ◽  
Vol 17 (3) ◽  
pp. 312-321
Author(s):  
Long Men ◽  
Zhan Ge ◽  
Sun Meng-Yun ◽  
Zhuang Hong ◽  
Wang Ran

In this article, we studied the preparation of Fe3+/TiO2 nanoparticles and the photocatalytic disinfection effects of two typical foodborne microorganisms, a gram-negative bacterium (Salmonella typhimurium) and a gram-positive bacterium (Listeria monocytogenes), in meat products. The physical properties of Fe3+/TiO2 nanoparticles embedded with various levels of Fe3+ (0%–10%) and synthesized through an impregnation process were investigated using X-ray diffraction, transmission electron microscopy, and UV-vis spectrophotometer, and their photocatalytic activities were evaluated by measuring the degradation of methylene blue dye and the disinfection of foodborne pathogens S. typhimurium and L. monocytogenes under visible light and UV light. Fe3+ ions were found to be scattered across TiO2 surfaces or across TiO2 crystal lattices as microcrystals. However, the capacity for TiO2 nanoparticles to absorb visible light was significantly enhanced after they were embedded with.Fe3+/TiO2 nanoparticles with molar ratios (R) of Fe3+ to TiO2 of 0.001:1, 0.005:1, and 0.01:1 exhibited higher levels of methylene blue dye photocatalytic degradation and higher levels of foodborne pathogen photocatalytic disinfection than the TiO2 control. However, nanoparticles containing >1% Fe3+ exhibited lower levels of photocatalytic activity than the TiO2 control. Salmonella typhimurium was more resistant to the nano-Fe3+/TiO2 treatment than L. monocytogenes under visible and UV light conditions. These experiments demonstrate that embedding Fe3+ in TiO2 nanoparticles does not remarkably influence the TiO2 nanoparticle size or structure. Embedding appropriate levels of Fe3+ content (0.1%–1%) can enhance the photocatalytic activity of TiO2 nanoparticles.


2018 ◽  
Vol 47 (12) ◽  
pp. 4251-4258 ◽  
Author(s):  
Ming Zhang ◽  
Liwen Wang ◽  
Tianyu Zeng ◽  
Qigao Shang ◽  
Hong Zhou ◽  
...  

Two 3D coordination polymers, bridged by 4,4′-bipyridine, were readily synthesized and fully characterized. As efficient photocatalysts in dye degradation under visible light, the mechanism and stability were studied.


2015 ◽  
Vol 293 (12) ◽  
pp. 3459-3469 ◽  
Author(s):  
Víctor M. Ovando-Medina ◽  
Raúl G. López ◽  
Blanca E. Castillo-Reyes ◽  
Pedro A. Alonso-Dávila ◽  
Hugo Martínez-Gutiérrez ◽  
...  

2020 ◽  
Vol 979 ◽  
pp. 175-179
Author(s):  
M. Nagalakshmi ◽  
N. Anusuya ◽  
S. Karuppuchamy

Titanium dioxide (TiO2) nanoparticles have been successfully prepared by biological method and the resulting material was characterized by XRD, FTIR, SEM, EDAX and UV-Vis spectroscopy. The synthesized TiO2 materials successfully degraded the methylene blue dye (MB) under UV light irradiation.


Sign in / Sign up

Export Citation Format

Share Document