scholarly journals Optimization of a Small Wind Power Plant for Annual Wind Speed Distribution

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1587
Author(s):  
Krzysztof Wrobel ◽  
Krzysztof Tomczewski ◽  
Artur Sliwinski ◽  
Andrzej Tomczewski

This article presents a method to adjust the elements of a small wind power plant to the wind speed characterized by the highest annual level of energy. Tests were carried out on the basis of annual wind distributions at three locations. The standard range of wind speeds was reduced to that resulting from the annual wind speed distributions in these locations. The construction of the generators and the method of their excitation were adapted to the characteristics of the turbines. The results obtained for the designed power plants were compared with those obtained for a power plant with a commercial turbine adapted to a wind speed of 10 mps. The generator structure and control method were optimized using a genetic algorithm in the MATLAB program (Mathworks, Natick, MA, USA); magnetostatic calculations were carried out using the FEMM program; the simulations were conducted using a proprietary simulation program. The simulation results were verified by measurement for a switched reluctance machine of the same voltage, power, and design. Finally, the yields of the designed generators in various locations were determined.

2021 ◽  
Vol 24 (6) ◽  
pp. 1285-1296
Author(s):  
B. P. Khozyainov ◽  
T. N. Svistunova

The purpose of the study is to provide an economic justification of the application efficiency of vertical axis wind-driven power plants using the principle of differential blade drag under low natural wind speeds from 1 to 15 m/s. The estimated cost is determined by the resource-index method. Calculations are made in two stages: at the first stage a statement is compiled where the consumption of resources for the design volume of work is determined according to the state unit estimate standards collections; at the second stage a local resource estimate is made, and the resource consumption in natural units is converted to cost estimates (in the prices of 2000 year). Local estimates are made using the GRAND-SMETA software package. All costs of construction materials for the wind turbine and supporting structure were assumed at the commercial cost, which was translated to the budget cost of October 2019 using deflators. The transition indices from the prices of 2000 to the prices of 2019 are applied to the cost of materials and machinery operation (without remuneration of engine-drivers) as well as to the amount of labour remuneration for installers and engine-drivers. The cost of the installation set calculated by the strength at 20 m/s natural speed is 1643.591 thousand rubles. This allowed to determine the cost of 1 kWh, which depends on the service life and the average annual wind speed. At a wind speed of 4 m/s the cost is 7.12 rub/kWh; at a wind speed of 8 m/s it is 2.19 rub/kWh. At wind speeds from 5 m/s to 11 m/s with equal exposure time intervals, the average cost of 1 kWh will be within 3.14 rub/kWh. Conducted studies have confirmed the effective use of the proposed vertical axis wind power plant under conditions of low natural wind speeds in Russia. The installation is proved to be competitive in comparison with the traditional methods of energy generation.


JURNAL ELTEK ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 25
Author(s):  
Herman Hariyadi ◽  
Leonardo Kamajaya ◽  
Fitri Fitri ◽  
Mohammad Hafidh Fadli

ABSTRAKPertumbuhan dan konsumsi listrik yang tidak berimbang serta tingkat polusi yang terus meningkat, mendorong banyak penelitian tentang pembangkit listrik energi baru dan terbarukan. Salah satu energi terbarukan yang menghasilkan energi listrik adalah pembangkit listrik tenaga bayu. Turbin angin jenis savonius merupakan turbin yang sesuai dioperasikan dengan kecepatan angin yang relatif rendah dan cocok digunakan sebagai pembangkit listrik berskala kecil. Pada penelitian ini penulis juga mengkaji konfigurasi variasi kemiringan sudu bilah savonius tipe u overlap dan tipe u non-overlap. Agar mengetahui spesifikasi teknik pembangkit listrik tenaga bayu ini, penulis merancang prototype pembangkit listrik tenaga bayu turbin savonius dengan variasi kecepatan angin 0-8 m/s, variasi kemiringan sudu turbin sebesar 00, 150 dan 300. Berdasarkan percobaan yang telah dilakukan turbin dengan kemiringan sudu 150 pada bilah savonius non overlap menghasilkan tegangan dan RPM paling tinggi. Rata-rata tegangan yang dihasilkan pada kemiringan sudu tersebut adalah 3,61V pada 1081 RPM, dan arus keluaran mencapai 950mA dengan beban resistor 10Ω. Data logger digunakan untuk menyimpan data berbagai sensor tersebut kemudian di plot dalam bentuk grafik dengan komunikasi serial ke PC untuk selanjutnya dianalisa. ABSTRACTThe growth and disproportionate consumption of electricity as well as the level of pollution continues to increase, prompting a lot of research on new and renewable energy power generation. One of the renewable energies that produces electrical energy is wind power generation. The savonius type wind turbine is a turbine that is suitable for operation with relatively low wind speeds and is suitable for use as small-scale power plants. In this study, the author also examines the configuration of the savonius blade slope variations, type u overlap and type u non-overlap. In order to know the technical specifications of this wind power plant, the author designed a prototype of the Savonius turbine wind power plant with wind speed variations of 0-8 m/s, turbine blade slope variations of 00, 150 and 300. Based on experiments that have been carried out turbines with blade slopes 150 on non-overlap savonius blades produces the highest voltage and RPM. The average voltage produced on the slope of the blade is 3.61V at 1081 RPM, and the output current reaches 950mA with a load resistor of 10Ω. The data logger is used to store data on various sensors and then plotted in the form of a graph with serial communication to a PC for further analysis.


Author(s):  
Anizar Indriani ◽  
Gordon Manurung ◽  
Novalio Daratha ◽  
Hendra Hendra

ABSTRACTWind Power Plant is a power plant that uses wind as an energy resources to produce electrical energy. The Bengkulu region which is mostly a coastal area with conditions of strong wind speeds that can be utilized as a source of wind power generation. Wind energy can be utilized as an alternative and renewable energy source using wind turbine. Wind turbine performance depends on the shape, position and dimensions of the turbine, etc. In this study focus on the design of wind power plants with horizontal axis turbine position and vertical axis turbine position. Wind turbine was designed with 3 blades made of wood materials. The permanent magnet DC generator are used for generator in the horizontal axis and vertical axis wind turbine positions with maximum power that can be generated at 800 Watt. Testing of the two types of turbines was carried out on the coast of Bengkulu city. The results shows that the horizontal axis wind power plant design starts rotating at a wind speed of 3.5 m / s, while the vertical axis wind power plant design starts rotating at a wind speed of 6.5 m / s. The voltage generated by the horizontal axis wind power plant at a wind speed of 3.5 m / s is 12 Volts. The voltage generated by the vertical axis wind power plant at a wind speed of 6.5 m / s is 9 Volts.


2019 ◽  
Vol 298 ◽  
pp. 00124
Author(s):  
Andrey Pushkarev ◽  
Dmitriy Khvorenkov ◽  
Olga Varfolomeeva ◽  
Mikhail Dyagelev ◽  
Ivan Pushkarev

The purpose of the work is to select the design concept of the wind power plant and the method of transformation of mechanical wind energy into electric energy depending on the wind speed in the given area. In order to solve the first task, it is proposed to approximate the distribution of wind speed with the help of the Raleigh Law, to use incomplete gamma functions and to compare the average annual power of wind plants with the vertical and horizontal spin axis. At low wind speeds dependence of wind plant mass with vertical spin axis with different types of generators is analyzed. The multiplication unit design is selected. Friction forces are determined in planetary multiplication unit having high efficiency. The effect of these forces on wind power plant efficiency is analyzed.


2017 ◽  
Vol 18 (2) ◽  
pp. 68
Author(s):  
Made Padmika ◽  
I Made Satriya Wibawa ◽  
Ni Luh Putu Trisnawati

A prototype of a wind power plant had been created using a ventilator  as a generator spiner. This power plant utilizes wind speed as its propulsion. Electricity generated in the DC voltage form between 0 volts up to 7.46 volts. The MT3608 module is used to stabilize and raise the voltage installed in the input and output of the charging circuit. For instrument testing, the wind speed on 0 m/s up to 6 m/s interval used. Maximum output of this tool with a wind speed of 6 m/s is 7.46 volts.


Author(s):  
Yih-Huei Wan ◽  
Michael Milligan ◽  
Brian Parsons

The National Renewable Energy Laboratory (NREL) started a project in 2000 to record long-term, high-frequency (1-Hz) wind power output data from large commercial wind power plants. Outputs from about 330 MW of wind generating capacity from wind power plants in Buffalo Ridge, Minnesota, and Storm Lake, Iowa, are being recorded. Analysis of the collected data shows that although very short-term wind power fluctuations are stochastic, the persistent nature of wind and the large number of turbines in a wind power plant tend to limit the magnitudes and rates of changes in the levels of wind power. Analyses of power data confirm that spatial separation greatly reduces variations in the combined wind power output relative to output from a single wind power plant. Data show that high frequency variations of wind power from two wind power plants 200 km apart are independent of each other, but low frequency power changes can be highly correlated. This fact suggests that time-synchronized power data and meteorological data can aid in the development of statistical models for wind power forecasting.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 172
Author(s):  
Tedy Harsanto ◽  
Haryo Dwi Prananto ◽  
Esmar Budi ◽  
Hadi Nasbey

<p>A vertical axis wind turbine triple-stage savonius type has been created by using simple materials to generate electricity for the alternative wind power plant. The objective of this research is to design a simple wind turbine which can operate with low wind speed. The turbine was designed by making three savonius rotors and then varied the structure of angle on the three rotors, 0˚, 90˚ and 120˚. The dimension of the three rotors are created equal with each rotor diameter 35 cm and each rotor height 19 cm. The turbine was tested by using blower as the wind sources. Through the measurements obtained the comparisons of output power, rotation of turbine, and the level of efficiency generated by the three variations. The result showed that the turbine with angle of 120˚ operate most optimally because it is able to produce the highest output power and highest rotation of turbine which is 0.346 Watt and 222.7 RPM. </p><p><strong>Keywords</strong>: Output power; savonius turbine; triple-stage; the structure of angle</p>


Sign in / Sign up

Export Citation Format

Share Document