scholarly journals Accuracy Improvement of Transformer Faults Diagnostic Based on DGA Data Using SVM-BA Classifier

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2970
Author(s):  
Youcef Benmahamed ◽  
Omar Kherif ◽  
Madjid Teguar ◽  
Ahmed Boubakeur ◽  
Sherif S. M. Ghoneim

The main objective of the current work was to enhance the transformer fault diagnostic accuracy based on dissolved gas analysis (DGA) data with a proposed coupled system of support vector machine (SVM)-bat algorithm (BA) and Gaussian classifiers. Six electrical and thermal fault classes were categorized based on the IEC and IEEE standard rules. The concentration of five main combustible gases (hydrogen, methane, ethane, ethylene, and acetylene) was utilized as an input vector of the two classifiers. Two types of input vectors have been tested; the first input type considered the five gases in ppm, and the second input type considered the gases introduced in the percentage of the sum of the five gases. An extensive database of 481 had been used for training and testing phases (321 data samples for training and 160 data samples for testing). The SVM model conditioning parameter “λ” and penalty margin parameter “C” were adjusted through the bat algorithm to develop a maximum accuracy rate. The SVM-BA and Gaussian classifiers’ accuracy was evaluated and compared with several DGA techniques in the literature.

2014 ◽  
Vol 535 ◽  
pp. 157-161
Author(s):  
Jeeng Min Ling ◽  
Ming Jong Lin ◽  
Chao Tang Yu

Dissolved gas analysis (DGA) is an effective tool for detecting incipient faults in power transformers. The ANSI/IEEE C57.104 standards, the most popular guides for the interpretation of gases generated in oil-immersed transformers, and the IEC-Duval triangle method are integrated to develop the proposed power transformer fault diagnosis method. The key dissolved gases, including H2, CH4, C2H2, C2H4, C2H6, and total combustible gases (TCG), suggested by ASTM D3612s instruction for DGA is investigated. The tested data of the transformer oil were taken from the substations of Taiwan Power Company. Diagnosis results with the text form called IEC-Duval triangle method show the validation and accuracy to detect the incipient fault in the power transformer.


2013 ◽  
Vol 659 ◽  
pp. 54-58 ◽  
Author(s):  
Li Li Mo

For transformer fault diagnosis of the IEC three-ratio is an effective method in the dissolved gas analysis (DGA). But it does not offer completely objective, accurate diagnosis for all the faults. Aiming at parameters are confirmed by the cross validation, using the ant colony algorithm, the ACSVM-IEC method for the transformer fault diagnosis is proposed. Experimental results show that the proposed algorithm in this paper that can find out the optimum accurately in a wide range. The proposed approach is robust and practical for transformer fault diagnosis.


2014 ◽  
Vol 573 ◽  
pp. 708-715
Author(s):  
V. Gomathy ◽  
S. Sumathi

To allow utilities to fulfill self-imposed and regulative performance targets the demand for new optimized tools and techniques to Estimate the performance of modern Transformers has increased. The modern power transformers has subjected to different types of faults, which affect the continuity of power supply which in turn causes serious economic losses. To avoid the interruption of power supply, various fault diagnosis approaches are adopted to detect faults in the power transformer and has to eliminate the impacts of the faults at the initial stage. Among the fault diagnosis methods, the hybrid technique of Particle Swarm Optimization (PSO) with Support Vector Machine (SVM) learning algorithm is simple conceptually derived and its implementation process is faster with better scaling properties for complex problems with non linearity and load variations but performance factor related to accuracy has a declined value in case of correlations implicit . In order to obtain better fault diagnosis to improve the service of the power transformer, SVM is optimized with Improved PSO technique to achieve high interpretation accuracy for Dissolved Gas Analysis (DGA) of power transformer through the extracting positive features from both the techniques. Primary SVM is applied to establish classification features for faults in the transformer through DGA. The features are applied as input data to Autonomous optimized Technique for faults analysis. The proposed methodology obtains the DGA data set from diagnostic gas in oil of 500 KV main transformers of Pingguo Substation in South China Electric Power Company. The simulations are carried out in MATLAB software with an Intel core 3 processor with speed of 3 GHZ and 4 GB RAM PC. The result obtained by Autonomous optimized Technique (IPSO-SVM) is compared against PSO-SVM to estimate the performance of the classifiers in terms of execution time and quality of classification for precision. The test results indicate that the Autonomous optimization of IPSO-SVM approach has significantly improved the classification accuracy and computational time for power transformer fault classification. Keywords: Transformer Fault Analysis, Improved Particle Swarm Optimization, Hybrid Optimization, Dissolved Gas Analysis, Support Vector Machine


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2344 ◽  
Author(s):  
Enwen Li ◽  
Linong Wang ◽  
Bin Song ◽  
Siliang Jian

Dissolved gas analysis (DGA) of the oil allows transformer fault diagnosis and status monitoring. Fuzzy c-means (FCM) clustering is an effective pattern recognition method, but exhibits poor clustering accuracy for dissolved gas data and usually fails to subsequently correctly classify transformer faults. The existing feasible approach involves combination of the FCM clustering algorithm with other intelligent algorithms, such as neural networks and support vector machines. This method enables good classification; however, the algorithm complexity is greatly increased. In this paper, the FCM clustering algorithm itself is improved and clustering analysis of DGA data is realized. First, the non-monotonicity of the traditional clustering membership function with respect to the sample distance and its several local extrema are discussed, which mainly explain the poor classification accuracy of DGA data clustering. Then, an exponential form of the membership function is proposed to obtain monotony with respect to distance, thereby improving the dissolved gas data clustering. Likewise, a similarity function to determine the degree of membership is derived. Test results for large datasets show that the improved clustering algorithm can be successfully applied for DGA-data-based transformer fault detection.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4017 ◽  
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Zitao Zheng ◽  
Bing Qi ◽  
Liwei Zhang

Power transformers are important equipment in power systems and their reliability directly concerns the safety of power networks. Dissolved gas analysis (DGA) has shown great potential for detecting the incipient fault of oil-filled power transformers. In order to solve the misdiagnosis problems of traditional fault diagnosis approaches, a novel fault diagnosis method based on hypersphere multiclass support vector machine (HMSVM) and Dempster–Shafer (D–S) Evidence Theory (DET) is proposed. Firstly, proper gas dissolved in oil is selected as the fault characteristic of power transformers. Secondly, HMSVM is employed to diagnose transformer fault with selected characteristics. Then, particle swarm optimization (PSO) is utilized for parameter optimization. Finally, DET is introduced to fuse three different fault diagnosis methods together, including HMSVM, hybrid immune algorithm (HIA), and kernel extreme learning machine (KELM). To avoid the high conflict between different evidences, in this paper, a weight coefficient is introduced for the correction of fusion results. Results indicate that the fault diagnosis based on HMSVM has the highest probability to identify transformer faults among three artificial intelligent approaches. In addition, the improved D–S evidence theory (IDET) combines the advantages of each diagnosis method and promotes fault diagnosis accuracy.


Sign in / Sign up

Export Citation Format

Share Document