scholarly journals Modeling of Persistence, Non-Acceptance and Sufficiency in Long-Term Energy Scenarios for Germany

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4484
Author(s):  
Christoph Kost ◽  
Julian Brandes ◽  
Charlotte Senkpiel ◽  
Philip Sterchele ◽  
Daniel Wrede ◽  
...  

Long-term transition pathways to a low-carbon energy system are analysed by applying the energy system model REMod. All in all, the paper contributes to the current research through an innovative scenario approach, using assumptions for societal trends and quantitative results for scenarios, analysing the paths towards climate neutrality and defossilization in 2050. In the case study of Germany, these trends and drivers influence the results and the technology composition in each consumption sector (buildings, transport, and industry). Across all scenarios, it can be observed that the electrification of all sectors is important for the defossilization of the energy system, as the direct use of electricity from renewable energy is more efficient than the consumption of carbon-neutral synthetic energy carriers. However, different consumer behavior (e.g., non-acceptance or resistance against specific technologies) influences not only the efficient use of (green) electricity, it also changes the optimal pathways of the transition to paths with greater efforts. One potential societal trend—sufficiency—could be an important cornerstone for reaching the targets, as the required expansion and exchange of technologies are lower and thus facilitate the transition.


Author(s):  
Wouter Nijs ◽  
Sofia Simoes ◽  
Alessandra Sgobbi ◽  
Pablo Ruiz-Castello ◽  
Christian Thiel ◽  
...  


2021 ◽  
Author(s):  
Henry Lee ◽  
Daniel P. Schrag ◽  
Matthew Bunn ◽  
Michael Davidson ◽  
Wei Peng ◽  
...  

Climate change is a key problem of the 21st century. China, as the largest emitter of greenhouse gases, has committed to stabilize its current emissions and dramatically increase the share of electricity production from non-fossil fuels by 2030. However, this is only a first step: in the longer term, China needs to aggressively strive to reach a goal of zero-emissions. Through detailed discussions of electricity pricing, electric vehicle policies, nuclear energy policies, and renewable energy policies, this book reviews how near-term climate and energy policies can affect long-term decarbonization pathways beyond 2030, building the foundations for decarbonization in advance of its realization. Focusing primarily on the electricity sector in China - the main battleground for decarbonization over the next century – it provides a valuable resource for researchers and policymakers, as well as energy and climate experts.



Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3007 ◽  
Author(s):  
Xunzhi Yin ◽  
Qi Dong ◽  
Mike Lawrence ◽  
Daniel Maskell ◽  
Jiaqi Yu ◽  
...  

This research analyses straw degradation inside straw bale walls in the region and develops the prediction of degradation inside straw bale walls. The results show that the straw inside straw bale walls have no serious concerns of degradation in the high hygrothermal environment in the region with only moderate concerns of degradation in the area 2–3 cm deep behind the lime render. The onsite investigations indicate that the degradation isopleth model can only predict straw conditions behind the rendering layer, whereas the isothermal model fits the complete situation inside straw bale walls. This research develops the models for predicting straw degradation levels inside a straw bale building in a warm (humid) continental climate. The impact of this research will help the growth of low carbon energy efficient straw bale construction with confidence pertaining to its long-term durability characteristics both in the region and regions sharing similar climatic features globally.



2022 ◽  
Vol 334 ◽  
pp. 02003
Author(s):  
Federico Parolin ◽  
Paolo Colbertaldo ◽  
Stefano Campanari

Hydrogen is recognized as a key element of future low-carbon energy systems. For proper integration, an adequate delivery infrastructure will be required, to be deployed in parallel to the electric grid and the gas network. This work adopts an optimization model to support the design of a future hydrogen delivery infrastructure, considering production, storage, and transport up to demand points. The model includes two production technologies, i.e., steam reforming with carbon capture and PV-fed electrolysis systems, and three transport modalities, i.e., pipelines, compressed hydrogen trucks, and liquid hydrogen trucks. This study compares a multi-modality formulation, in which the different transport technologies are simultaneously employed and their selection is optimized, with a mono-modality formulation, in which a single transport technology is considered. The assessment looks at the regional case study of Lombardy in Italy, considering a long-term scenario in which an extensive hydrogen supply chain is developed to supply hydrogen for clean mobility. Results show that the multi-modality infrastructure provides significant cost benefits, yielding an average cost of hydrogen that is up to 11% lower than a mono-modality configuration.



Energy ◽  
2020 ◽  
Vol 209 ◽  
pp. 118377
Author(s):  
Hans-Kristian Ringkjøb ◽  
Peter M. Haugan ◽  
Pernille Seljom ◽  
Arne Lind ◽  
Fabian Wagner ◽  
...  


2015 ◽  
Vol 49 ◽  
pp. 157-167 ◽  
Author(s):  
Pernille Seljom ◽  
Asgeir Tomasgard


2014 ◽  
Vol 135 ◽  
pp. 600-615 ◽  
Author(s):  
Manuel Welsch ◽  
Paul Deane ◽  
Mark Howells ◽  
Brian Ó Gallachóir ◽  
Fionn Rogan ◽  
...  


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2988 ◽  
Author(s):  
Hans-Karl Bartholdsen ◽  
Anna Eidens ◽  
Konstantin Löffler ◽  
Frederik Seehaus ◽  
Felix Wejda ◽  
...  

Like many other countries, Germany has defined goals to reduce its CO2-emissions following the Paris Agreement of the 21st Conference of the Parties (COP). The first successes in decarbonizing the electricity sector were already achieved under the German Energiewende. However, further steps in this direction, also concerning the heat and transport sectors, have stalled. This paper describes three possible pathways for the transformation of the German energy system until 2050. The scenarios take into account current climate politics on a global, European, and German level and also include different demand projections, technological trends and resource prices. The model includes the sectors power, heat, and transportation and works on a Federal State level. For the analysis, the linear cost-optimizing Global Energy System Model (GENeSYS-MOD) is used to calculate the cost-efficient paths and technology mixes. We find that a reduction of CO2 of more than 80% in the less ambitious scenario can be welfare enhancing compared to a scenario without any climate mitigating policies. Even higher decarbonization rates of 95% are feasible and needed to comply with international climate targets, yet related to high effort in transforming the subsector of process heat. The different pathways depicted in this paper render chances and risks of transforming the German energy system under various external influences.





Sign in / Sign up

Export Citation Format

Share Document