scholarly journals Bumpless Transfer of Uncertain Switched System and Its Application to Turbofan Engines

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5204
Author(s):  
Penghui Sun ◽  
Xi Wang ◽  
Shubo Yang ◽  
Bei Yang ◽  
Huairong Chen ◽  
...  

Nonlinear control problems in turbofan engines are challenging. No single nonlinear controller can achieve desired control effects in a full flight envelope, but in the case of multiple controllers, there exist problems in the bumpless transfer between different controllers. To this end, this paper presents a bumpless transfer mechanism for an uncertain switched system based on integral sliding mode control (ISMC), and the mechanism can be used for the speed control of turbofan engines. The uncertain switched system is used to describe the turbofan engine dynamics. Then, the ISMC controller is derived for subsystems of the uncertain switched system. A resetting scheme is introduced for the ISMC controller to ensure the continuity of control inputs during the controller transition, as well as the bumpless transfer. In view of the transient behavior caused by controller switching, the global stability of the switched system is analyzed using the multiple Lyapunov function approach and average dwell time condition. Simulation results validate that the designed resetting scheme can ensure the continuity of control input signals and avoid the instability caused by high-frequency controller switching, and increase the control effectiveness of the proposed ISMC method within the full flight envelope.

2000 ◽  
Vol 122 (4) ◽  
pp. 586-593 ◽  
Author(s):  
J. K. Hedrick ◽  
P. P. Yip

This paper discusses the development of a nonlinear controller design methodology and its application to an automotive control problem. The method is called the “Multiple Sliding Surface” method and is closely related to sliding mode control, input/output linearization and integrator backstepping. The method was developed for a class of systems, typical of automotive control systems, where the uncertainties are “mismatched” and where many of the equations contain sparse, experimentally obtained maps. The error bounds on these maps are often unknown and their sparseness makes them difficult to differentiate. The developed method does not require any derivatives and has guaranteed semi-global stability. This paper summarizes the development of the method and applies it to the design of a highly nonlinear system. The example is a combined brake/throttle controller for precision vehicle following. This controller was implemented on the California PATH vehicles in DEMO’97, an automated highway technology demonstration that occurred in San Diego, California in August of 1997. [S0022-0434(00)03004-5]


Author(s):  
Junqi Yang ◽  
Fanglai Zhu ◽  
Xingguo Tan ◽  
Yunjian Wang

This paper deals with the problem of robust state estimation for a class of switched linear systems with unknown inputs under average dwell time (ADT) switching, where the switching of the observers is synchronous with that of the estimated system. First, based on the feasibility of an optimization problem with linear matrix inequality (LMI) constraint, a robust sliding-mode switched observer is developed such that the asymptotic state reconstruction is guaranteed even if the switched system is with unknown inputs. Second, a reduced-order switched system which avoids the influence of unknown inputs is constructed by the technique of state transformation, and a reduced-order switched observer is proposed to estimate the continuous states of the original switched system. Next, the conditions under which a full-order switched observer exists also guarantee the existence of a reduced-order switched observer. The convergence of the state estimate is proved to be exponential by appropriate Lyapunov analysis. Finally, the simulation results confirm the predicted performance and applicability by a simplified three-tank system.


2014 ◽  
Vol 635-637 ◽  
pp. 1285-1289
Author(s):  
Rong Jun Yang ◽  
Yun Guo Shi

A representation of robust nonlinear controller is proposed for ammunitions space trajectory control, which is combined adaptive dynamic inverse with sliding mode control. The control law design accomplishes 3-D trajectory tracking using attitude angle as control input, and includes the parameter update to correct force model errors, also sliding mode switch portion to resist winds. A transition reference trajectory which is easy to implement for tracking is designed, according to the actual location and speed of start control point. Simulation results show the proposed control strategy get accurate tracking performance of excellent dynamic characteristics in large uncertainties.


2017 ◽  
Vol 40 (5) ◽  
pp. 1490-1498 ◽  
Author(s):  
Yiwen Qi ◽  
Jiaming Hu

This paper investigates the bumpless transfer problem of switched linear systems with sensor faults. The framework of the switched control systems includes two kinds of controllers, one is for normal use and the other is for fault-tolerant control when sensor faults have occurred. Considering that the information of the sensor faults is unknown to the controller, an observer is designed for the fault-tolerant controller. Moreover, in view of the issue that the output difference between the online and offline controllers may induce undesired oscillations in control input at the switching instant, a bumpless transfer compensator is presented based on sliding mode control. Due to the reasonably designed compensator, the difference can be minimized to a small value to guarantee smooth transitions of the control input when sensor faults have occurred. Finally, numerical simulations verify the effectiveness of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Xingzhi Xu ◽  
Yakui Gao ◽  
Weiguo Zhang

A state feedback control law based on the sliding mode control method is derived for the aeroelastic response and flutter suppression of a two-dimensional airfoil section with hysteresis nonlinearity in pitch. An observer is constructed to estimate the unavailable state variables of the system. With the control law designed, nonlinear effect of time delay between the control input and actuator is investigated by a numerical approach. The closed-loop system including the observer and nonlinear controller is asymptotically stable. The simulation results show that the observer can give precise estimations for the plunge displacement and the velocities in pitch and plunge and that the controller is effective for flutter suppression. The time delay between the control input and actuator may jeopardize the control performance and cause high-frequency vibrations.


Author(s):  
Afef Hfaiedh ◽  
Ahmed Chemori ◽  
Afef Abdelkrim

In this paper, the control problem of a class I of underactuated mechanical systems (UMSs) is addressed. The considered class includes nonlinear UMSs with two degrees of freedom and one control input. Firstly, we propose the design of a robust integral of the sign of the error (RISE) control law, adequate for this special class. Based on a change of coordinates, the dynamics is transformed into a strict-feedback (SF) form. A Lyapunov-based technique is then employed to prove the asymptotic stability of the resulting closed-loop system. Numerical simulation results show the robustness and performance of the original RISE toward parametric uncertainties and disturbance rejection. A comparative study with a conventional sliding mode control reveals a significant robustness improvement with the proposed original RISE controller. However, in real-time experiments, the amplification of the measurement noise is a major problem. It has an impact on the behaviour of the motor and reduces the performance of the system. To deal with this issue, we propose to estimate the velocity using the robust Levant differentiator instead of the numerical derivative. Real-time experiments were performed on the testbed of the inertia wheel inverted pendulum to demonstrate the relevance of the proposed observer-based RISE control scheme. The obtained real-time experimental results and the obtained evaluation indices show clearly a better performance of the proposed observer-based RISE approach compared to the sliding mode and the original RISE controllers.


Author(s):  
Mohammad Pourmahmood Aghababa

The problem of stabilization of nonlinear fractional systems in spite of system uncertainties is investigated in this paper. First, a proper fractional derivative type sliding manifold with desired stability and convergence properties is designed. Then, the fractional stability theory is adopted to derive a robust sliding control law to force the system trajectories to attain the proposed sliding manifold and remain on it evermore. The existence of the sliding motion is mathematically proven. Furthermore, the sign function in the control input, which is responsible to the being of harmful chattering, is transferred into the fractional derivative of the control input. Therefore, the resulted control input becomes smooth and free of the chattering. Some numerical simulations are presented to illustrate the efficient performance of the proposed chattering-free fractional variable structure controller.


Sign in / Sign up

Export Citation Format

Share Document