scholarly journals A Variable Performance Parameters Temperature–Flowrate Scheduling Model for Integrated Energy Systems

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5400
Author(s):  
Hong-Hai Niu ◽  
Yang Zhao ◽  
Shang-Shang Wei ◽  
Yi-Guo Li

Optimal scheduling strategy of integrated energy systems (IES) with combined cooling, heating and power (CCHP) has become increasingly important. In order to make the scheduling strategy fit to the practical implementation, this paper proposes a variable performance parameters temperature–flowrate scheduling model for IES with CCHP. The novel scheduling model is established by taking flowrate and temperature as decision variables directly. In addition, performance parameters are treated as variables rather than constants in the proposed model. Specifically, the efficiencies of the gas turbine and the waste heating boiler are estimated with the partial load factor, and the coefficient of performance (COP) of the electrical chillers and heat pumps are estimated with the partial load factor and outlet water temperature. Then, to deal with the model nonlinearities caused by considering the variability of COPs, the COP-expansion method is developed by adopting a specific representation of the COP and the expansion of the outlet water temperature. Finally, case studies show that the variable performance parameters’ temperature–flowrate scheduling model can account for the variation of performance parameters, especially the impacts of water temperature and the part load factor on the COP. Therefore, the proposed scheduling model can obtain more adequate and feasible operation strategy, thereby suggesting its applicability in engineering practice.

Author(s):  
Thomas A. Ulrich ◽  
Roger Lew ◽  
Ronald L. Boring ◽  
Torrey Mortenson ◽  
Jooyoung Park ◽  
...  

Nuclear power plants are looking towards integrated energy systems to address the challenges faced by increasing competition from renewable energy and cheap natural gas in wholesale electricity markets. Electricity-hydrogen hybrid operations is one potential technology being explored. As part of this investigation a human factors team was integrated into the overall engineering project to develop a human system interface (HSI) for a novel system to extract steam for a coupled hydrogen production process. This paper presents the process used to perform the nuclear specific human factors engineering required to develop the HSI for this novel and unprecedented system. Furthermore, the early integration of the human factors team and the meaningful improvements to the engineering of the system itself in addition to the successful development of the HSI for this particular application are described. Lastly, the HSI developed is presented to demonstrate the culmination of the process and disseminate a potential HSI design for electricity-hydrogen hybrid operations that may be useful for others exploring similar integrated energy systems concepts.


Sign in / Sign up

Export Citation Format

Share Document