scholarly journals The Architecture of a Real-Time Control System for Heating Energy Management in the Intelligent Building

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5402
Author(s):  
Daniel Prusak ◽  
Grzegorz Karpiel ◽  
Konrad Kułakowski

Very often, constructors and designers of intelligent building and building automation systems have a choice: to create a compact system with a limited configuration and modifying the system’s behavior possibilities or provide a fully configurable solution at the expense of introducing a full SCADA system equipped with an additional knowledge database and inference system equipped with learning capabilities. In the presented work, we show that there is a third solution. Using a multilayer control system composed of programmable FPGAs, small PCs, and cloud computing resources, we can design and implement a fully configurable intelligent control system for the building’s heating. Our solution combines the compactness of the structure and the ease of installation and assembly.

Author(s):  
M. Kanthi

The Ankle Foot Orthosis (AFO) is an orthotic device intended to assist or to restore the movements of the ankle foot complex in the case of pathological gait. Active AFO consists of sensor, controller, and actuator. The controller used in the conventional AFO to control the actuator does not use the property of synchronization of the feet. This chapter deals with development of a fuzzy-based intelligent control unit for an AFO using property of symmetry in the foot movements. The control system developed in LabVIEW provides real-time control of the defective foot by continuously monitoring the gait patterns. The input signals for the control system are generated by the sensor system having gyroscope. DC motor is used as an actuator. The data acquisition for Gait Analysis is done using National Instrument's data acquisition system DAQ6221 interfaced with a gyro-sensor.


Fuzzy Systems ◽  
2017 ◽  
pp. 1203-1236
Author(s):  
M. Kanthi

The Ankle Foot Orthosis (AFO) is an orthotic device intended to assist or to restore the movements of the ankle foot complex in the case of pathological gait. Active AFO consists of sensor, controller, and actuator. The controller used in the conventional AFO to control the actuator does not use the property of synchronization of the feet. This chapter deals with development of a fuzzy-based intelligent control unit for an AFO using property of symmetry in the foot movements. The control system developed in LabVIEW provides real-time control of the defective foot by continuously monitoring the gait patterns. The input signals for the control system are generated by the sensor system having gyroscope. DC motor is used as an actuator. The data acquisition for Gait Analysis is done using National Instrument's data acquisition system DAQ6221 interfaced with a gyro-sensor.


1995 ◽  
Vol 389 ◽  
Author(s):  
K. C. Saraswat ◽  
Y. Chen ◽  
L. Degertekin ◽  
B. T. Khuri-Yakub

ABSTRACTA highly flexible Rapid Thermal Multiprocessing (RTM) reactor is described. This flexibility is the result of several new innovations: a lamp system, an acoustic thermometer and a real-time control system. The new lamp has been optimally designed through the use of a “virtual reactor” methodology to obtain the best possible wafer temperature uniformity. It consists of multiple concentric rings composed of light bulbs with horizontal filaments. Each ring is independently and dynamically controlled providing better control over the spatial and temporal optical flux profile resulting in excellent temperature uniformity over a wide range of process conditions. An acoustic thermometer non-invasively allows complete wafer temperature tomography under all process conditions - a critically important measurement never obtained before. For real-time equipment and process control a model based multivariable control system has been developed. Extensive integration of computers and related technology for specification, communication, execution, monitoring, control, and diagnosis demonstrates the programmability of the RTM.


2014 ◽  
Vol 926-930 ◽  
pp. 1497-1500
Author(s):  
Xu Yang Chu ◽  
Gang Liu ◽  
Chun Mei Wang ◽  
Kai Zhu ◽  
Da Yun Chen ◽  
...  

This paper describe the principles of Servo Control System of Electrical Discharge Machining Based on PMAC .To meet the requirements of processing and Put forward based on PMAC servo control system. This control system combines hardware resource with PMAC real-time control function. Elaborate human-computer interface developing process.


Sign in / Sign up

Export Citation Format

Share Document