scholarly journals Multi-Port and -Functional Power Conditioner and Its Control Strategy with Renewable Energy Access for a Railway Traction System

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6146
Author(s):  
Fujun Ma ◽  
Yulin Kuang ◽  
Zhengwen Wang ◽  
Gelin Huang ◽  
Dexing Kuang ◽  
...  

To relieve the contradiction between supply and demand, a multi-port power conditioner (MP-PC) and control strategy with renewable energy access for a railway traction system is presented, which is mainly composed of full-bridge-based MMC and isolated DC/DC converters. As for the full-bridge-based MMC, the equivalent model is established and its novel voltage control method is proposed, which can provide a medium/low-voltage DC-link. A renewable energy system is connected to the system through the DC-link, so the MP-PC can achieve on-site consumption and balance between the load power and output power of RESs. Meanwhile, with the proposed control strategy, MP-PC can achieve three-phase power balance control and improve the operation performance of the railway traction system. Finally, the traction power platform and simulation model are established in the lab, and the topology and control strategy of MP-PC are verified effectively.

2014 ◽  
Vol 707 ◽  
pp. 329-332
Author(s):  
Li Ling Sun ◽  
Dan Fang

As the number of doubly fed induction generator (DFIG)- based wind-turbine systems continues to increase, wind turbines are required to provide Low Voltage Ride-Through (LVRT) capability, especially under the condition of grid voltage dips. This paper, depending on the operating characteristics of doubly-fed induction generator during grid faults ,deals with a protection and control strategy on rotor-side converter (RSC) to enhance the low voltage ride through capability of a wind turbine driven doubly fed induction generator (DFIG). The simulation and experiment studies demonstrate the correctness of the developed model and the effectiveness of the control strategy for DFIG-based wind-turbine systems under such adverse grid conditions.


2018 ◽  
Author(s):  
Etinosa Ekomwenrenren ◽  
Hatem Alharbi ◽  
Taisir Elgorashi ◽  
Jaafar Elmirghani ◽  
Petros Aristidou

The cyber-physical nature of electric power systems has increased immensely over the last decades, with advanced communication infrastructure paving the way. It is now possible to design wide-area controllers, relying on remote monitor and control of devices, that can tackle power system stability problems more effectively than local controllers. However, their performance and security relies extensively on the communication infrastructure and can make power systems vulnerable to disturbances emerging on the cyber side of the system. In this paper, we investigate the effect of communication delays on the performance and security of wide-area damping controllers (WADC) designed to stabilise oscillatory modes in a Cyber-Physical Power System (CPPS). We propose a rule-based control strategy that combines wide-area and traditional local stabilising controllers to increase the performance and maintain the security of CPPS. The proposed strategy is validated on a reduced CPPS equivalent model of Great-Britain (GB).


Sign in / Sign up

Export Citation Format

Share Document